OPEN THIS PACKAGE FIRST!

HOW TO ASSEMBLE AND USE YOUR INDIVIDUAL LEARNING PROGRAM

Model EE-3401

595-2039-02

Before you begin to use this Individual Learning Program you will need to assemble and organize it. The printed material, looseleaf binder, electronic parts and cassette tapes have been packed to provide maximum protection during shipping. By assembling this material yourself you will check to see that nothing is missing. At the same time, it will give you an opportunity to look over the program and get familiar with it.

Follow the step-by-step instructions below to assemble your program. Check off each step as you complete it. Then begin the program as indicated in the last step.

- Be sure that you have received all of the materials. This Individual Learning Program contains:
- () One package of printed material wrapped in plastic.
- (Two looseleaf binders.
- (/ One Final Examination Kit envelope.
- () One tape holder with two cassette tapes.
- (One audio-visual flip chart.
- () Package(s) of electronic parts. Exact content will be checked in a later step.
- (/) One set of tab dividers.

- 2. Put the printed material and the tab dividers into the looseleaf binder. The printed material has already been collated in the proper sequence, but you will have to separate it and place it after the appropriate tab dividers. Colored sheets have been placed between the different sections to help you separate them quickly. The material is divided into units, and there is a tab divider for each unit. Place all of the introductory material in front of the tab divider for unit one. Place units 1 through 6 and the cassette holder in one binder. Place units 7 through 10 and Appendixes A and B in the second binder.
- Locate the Parts List which should follow this sheet in the introductory material. Check the parts you received against this list. If you are missing parts, use the enclosed Parts Order Form to order replacements.
- 4. You will not need the Final Examination Kit until you complete the program, but you can take a look at it now. Check the contents against the list on the front of the envelope.
- 5. Begin your program. Start by playing cassette tape 1 side A. Follow the instructions given there.

INDIVIDUAL LEARNING PROGRAM IN MICROPROCESSORS

EE-3401

COURSE OBJECTIVES AND OUTLINE

COURSE OBJECTIVES

When you have completed this course, you will be able to do the following:

- 1. Program a representative microprocessor.
- 2. Interface a representative microprocessor with the "outside world."

Examination Answers

COURSE OUTLINE

XI.

OURSE	OCILINE
UNIT 1	NUMBER SYSTEMS AND CODES
I.	Introduction
II.	Unit Objectives
III.	Unit Activity Guide
IV.	Decimal Number System
V.	Binary Number System
	A. Positional Notation
	B. Converting Between the Binary and Decimal
	Number Systems
VI.	Octal Number System
	A. Conversion from Decimal to Octal
	B. Converting Between the Octal and Binary
	Number System
VII.	Hexadecimal Number System
	A. Converting from Decimal to Hexadecimal
	B. Converting Between the Hexadecimal and Binary
	Number Systems
VIII.	Binary Codes
	A. Binary Coded Decimal
	B. Special Binary Codes
	C. Alpha Numeric Codes
IX.	Experiment
x	Unit Examination

IX.

Examination Answers

UNIT 4	INTRODUCTION TO PROGRAMMING
I.	Introduction
II.	Unit Objectives
III.	Unit Activity Guide
IV.	Branching
	A. Relative Addressing
	B. Executing a Branch Instruction
	C. Branching Foward
	D. Branching Backward
V.	Conditional Branching
• .	A. Condition Codes
	B. Conditional Branch Instructions
VI.	Algorithms
٧1.	A. Multiplying by Repeated Addition
	0 - J F
VII.	
V 11.	Additional Instructions
	A. Add With Carry (ADC) Instruction
	B. Subtract With Carry (SBC) Instruction
	C. Arithmetic Shift Accumulator Left (ASLA)
	Instruction
* ****	D. Decimal Adjust Accumulator (DAA) Instruction
VIII.	Experiment
IX.	Unit Examination
X.	Examination Answers
UNIT 5	THE 6800 MICROPROCESSOR — PART 1
I.	Introduction
II.	Unit Objectives
III.	Unit Activity Guide
IV.	Architecture of the 6800 MPU
	A. Programming Model of the 6800 MPU
	B. Block Diagram of the 6800 MPU
V.	Instruction Set of the 6800 MPU
	A. Arithmetic Instructions
	B. Data Handling Instructions
	C. Logic Instructions
	D. Data Test Instructions
	E. Index Register and Stack Pointer Instructions
	F. Branch Instructions
	G. Condition Code Register Instructions
•	H. Summary of Instruction Set
VI.	New Addressing Modes
	A. Extended Addressing
	B. Indexed Addressing
	C. Instruction Set Summary
VII.	Experiment
VIII.	Unit Examination
IX.	Examination Answers

4	UNIT 6	THE 6800 MICROPROCESSOR — PART 2
7	I.	Introduction
	II. III.	Unit Objectives Unit Activity Guide
	IV.	Stack Operations
	14.	A. Cascade Stack
		B. Memory Stack
	V.	Subroutines
		A. Jump (JMP) Instruction
		B. JSR and RTS Instructions
		C. Nested Subroutines
		D. Branch to Subroutine (BSR) Instruction
	VI.	E. Summary of Subroutine Instructions
	V 1.	Input-Output (I/O) Operations A. Output Operations
		B. Input Operations
		C. Input-Output Programming
		D. Program Control of I/O Operations
		E. Interrupt Control of I/O Operations
	VII.	Interrupts
		A. Reset
		B. Non-Maskable Interrupts
		C. Return From Interrupt (RTI) InstructionD. Interrupt Request (IRQ)
		E. Interrupt Mask Instructions
		F. Software Interrupt (SWI) Instruction
		G. Wait for Interrupt (WAI) Instruction
	VIII.	Experiment
	IX.	Unit Examination
	Χ.	Examination Answers
	UNIT 7	INTERFACING PART 1
	I.	Introduction
	П.	Unit Objectives
	III.	Unit Activity Guide
	IV.	Interfacing Fundamentals
	14.	A. Buses
		B. 3-State Logic C. The 6800 MPU Interface Lines
		D. Instruction Timing
		E. Timing of Program Segment
	••	F. The 6800 Data Sheet
	V.	Interfacing With Random Access Memory
		A. The Static RAM Storage Cell
		B. A 128-Word by 8-Bit RAM
		C. A 256-Word by 4-Bit RAM
		D. Connecting RAM to the MPU
		E. Address Decoding
	VI.	Interfacing With Displays
		A. The 7-Segment Display
		B. Driving the 7-Segment Display
		C. Using an Addressable Latch
		D. Multiplexing Displays
	VII.	Experiment
	VIII.	Unit Examination
	IX.	Examination Answers

UNIT 8 INTERFACING — PART 2 I. Introduction II. Unit Objectives Unit Activity Guide Ш. IV. Interfacing With Switches A. Interfacing Requirements B. A Typical Keyboard Arrangement V. The Peripheral Interface Adapter (PIA) A. I/O Diagram B. PIA Registers C. Addressing the Registers in the PIA D. Initializing the PIA E. Addressing the PIA VI. Using the PIA A. Driving 7-Segment Displays B. Decoding Keyboards C. Decoding a Switch Matrix VII. Experiment VIII. Unit Examination IX. **Examination Answers** UNIT 9 PROGRAMMING EXPERIMENTS I. Introduction II. Experiment 1. Binary/Decimal Training Program Experiment 2. Hexadecimal/Decimal III. Training Program Straight Line Programs IV. Experiment 3. V. Experiment 4. Arithmetic and Logic Instructions Experiment 5. Program Branches VI. VII. Experiment 6. Additional Instructions VIII. Experiment 7. New Addressing Modes IX. Experiment 8. Arithmetic Operations X. Experiment 9. Stack Operations

Experiment 10. Subroutines

XI.

UNIT 10 INTERFACING EXPERIMENTS

I. Introduction

6

- II. Experiment 1. Memory Circuits
- III. Experiment 2. Clock
- IV. Experiment 3. Address decoding
- V. Experiment 4. Data Output
- VI. Experiment 5. Data Input
- VII. Experiment 6. Introduction to the Peripheral Interface Adapter (PIA)
- VIII. Experiment 7. Audio Output
 - IX. Experiment 8. Key Matrix and Parallel-to-Serial Conversion
 - X. Experiment 9. Digital-to-Analog and Analogto-Digital Conversion

APPENDIX A DEFINITION OF THE EXECUTABLE INSTRUCTIONS

- I. Nomenclature
- II. Executable Instructions (definition of)
- III. Table A-1. Addressing Formats (1)
- IV. Table A-2. Addressing Formats (2)
- V. Table A-3. Addressing Formats (3)
- VI. Table A-4. Addressing Formats (4)
- VII. Table A-5. Addressing Formats (5)
- VIII. Table A-6. Addressing Formats (6)
- IX. Table A-7. Addressing Formats (7)
- X. Table A-8. Addressing Formats (8)

APPENDIX B DATA SHEETS

- I. MC6800 Data Sheet
- II. MC6820 Data Sheet
- III. MC6850 Data Sheet
- IV. MC6810 Data Sheet
- V. MC6830 Data Sheet
- VI. MC6832 Data Sheet
- VII. Positive Powers of Two
- VIII. Negative Powers of Two
 - IX. Positive Powers of Eight
 - X. Positive Powers of Sixteen
 - XI. Negative Powers of Sixteen

PARTS LIST

This parts list contains most of the parts used in the experiments which you will perform with this course. The key number in the parts list corresponds to the numbers in the parts pictorials. Some parts are packaged in envelopes. Except for this initial parts check, keep these parts in their envelopes until they are called for in an experiment. Some of the parts saved from assembly of the ET-3400 will also be used in the expenments.

KEY	HEATH
No.	Part No.

QTY. DESCRIPTION

CIRCUIT Comp. No.

A3

RESISTORS

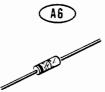
(1/4-Watt)

A1	6-471-12	8	470 Ω (yellow-violet-
			brown)
A 1	6-102-12	5	1000 Ω (brown-black
			red)

(1/2-Watt)

A2	6-101	2	100 Ω (brown-black-brown)
A2	6-202	1	2000 Ω (red-black-red)
A2	6-272	2	2700 Ω (red-violet-red)
A2	6-103	2	10 kΩ (brown-black- orange)
A2	6-105	1	1 MΩ (brown-black- green)

А3	21-147	1	47 pF ceramic
АЗ	21-172	3	100 pF ceramic
A4	25-117	1	100 μF electrolytic


CAPACITORS

ımic	
ramic	
ectrolytic	•

PUSHBUTTON SWITCHES

A5	64-724	1	Switch #1
A5	64-725	1	Switch #2
A5	64-726	1	Switch #3
A5	64-727	1	Switch #4

DIODES

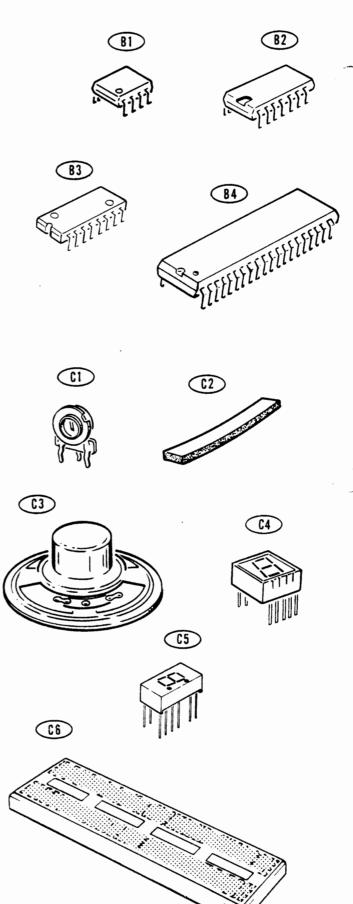
A6	56-56	1	1N4149
A6	56-616	1	5.6 V Zener

INTEGRATED CIRCUITS (IC'S)

NOTE: Integrated Circuits are marked for identification in one of the following ways:

- 1. Part number.
- 2. Type number.
- 3. Part number and type number.
- 4. Part number with a type number other than the one listed.

Disregard any letters that preceed or follow the numbers on an ${\sf IC}$.


B1	442-22	1	741
~~B1	442-39	1	301
B 2	443-1	1	7400
B 2	443-13	2	7474
─82	443-717	1	74126
B 2	443-719	1	74LS266
B2	443-732	2	74LS30
⊸B 2	443-800	1	74LS27
⊸ B2	443-842	1	1406
B3	443-694	1	9368
B3	443-804	1	74LS259
B3	443-807	1	74LS42

NOTE: Do not remove the next two IC's from their protective foam packing until you are instructed to. This anti-static foam packing protects the IC's from damage due to static electricity.

—83 443-721 2 2112 —84 443-843 1 6820

MISCELLANEOUS

C1	10-936	2	1000 Ω control
C2	73-92	1	Foam tape
	344-59	12'	White wire
C3	401-163	1	Speaker
~ 64	411-819	1	FND-500 7-segment display
C5	411-831	1	TIL-312 7-segment display
C6	432-875	1	Connector block
	266-945	1	Cassette holder
	266-962	1	Parts container (plastic box)
	448-251	1	Cassette tape #1
	448-252	1	Cassette tape #2
	597-1661	1	Instruction set summary card
			-

