HEATHKIT
CONTINUING
EDUCATION

A — 4

Individual Learning
Program

MICROPROCESSORS

Unit 2
MICROCOMPUTER BASICS
EE-3401
HEATH COMPANY Copyright © 1977

Heath C
BENTON HARBOR, MICHIGAN 49022 A Rights Feserved

Printed in the United States of America

2-2

UNIT TWO

HEATHKIT

CONTINUING
EDUCA!

CONTENTS

Introduction.............c.coiiiiii..
Unit Objectivesccoiviiinnnann.
Unit Activity Guide

Terms and Conventions

An Elementary Microcomputer

Executing a Program
Addressing Modes
Experiment 3............. oo
Unit Examination..........................

Examination Answerscovvvun..

.............

[
I!genrymw Microcomputer Basics J 2-3

MICROPROCESSORS

INTRODUCTION

A microprocessor is a very complex electronic circuit. It consists of
thousands of microscopic transistors squeezed onto a tiny chip of silicon
that is often no more than one-eighth inch square. The chip is placed ina
package containing up to about 40 leads.

The thousands of transistors that make up the microprocessor are ar-
ranged to form many different circuits within the chip. From the
standpoint of learning how the microprocessor operates, the most impor-
tant circuits on the chip are registers, counters, and decoders. In this unit,
you will learn how these circuits can work together to perform simple but
useful tasks.

2-4

UNIT TWO

HEATHKIT
CONTINUING
EDUCA

sIEsmmmma e

UNIT OBJECTIVES

When you have completed this unit you will be able to:

1.

Define the terms: microprocessor, microcomputer, input, output,
I/O, 1/O device, I/O port, instruction, program, stored program
concept, word, byte, MPU, ALU, operand, memory, address, read,
write, RAM, fetch, execute, MPU cycle, mnemonic, opcode, and
bus.

Explain the purpose of the following circuits in a typical micro-
processor: accumulator, program counter, instruction decoder,
controller sequencer, data register, and address register.

Using a simplified block diagram of a hypothetical microprocessor,
trace the data flow that takes place between the various circuits
during the execution of a simple program.

Describe the difference between inherent, immediate, and direct
addressing.

Write simple, straight-line programs that can be executed by the
ET-3400 Microprocessor Trainer.

Microcomputer Basics

UNIT ACTIVITY GUIDE

Completion

Time
El Read Section on Terms and Conventions.
[C] Complete Self-Test Review Questions 1 — 11.
D Read Section on An Elementary Microcomputer.
[C] Complete Self-Test Review Questions 12 — 30.
[] Read Section on Executing a Program.
(] Complete Self-Test Review Questions 31 — 40.
] Read Section on Addressing Modes.

D Complete Self-Test Review Questions 41 — 50.

] Perform Experiment 3.

[C] Complete Unit Examination.

[] Check Examination Answers.

2-5

2-6

UNIT TWO

HEATHKIT
CONTINUING
_EDUCATION

2 "s

TERMS AND CONVENTIONS

A microprocessor is a logic device that is used in digital electronic
systems. It is also being used by hobbyists, experimenters and low-
budget research groups as a low-cost, general-purpose computer. But a
distinction should be made between the microprocessor and the micro-
computer.

The microprocessor unit, or MPU, is a complex logic element that per-
forms arithmetic, logic, and control operations. The trend is to package it
as a single integrated circuit.

A microcomputer contains a microprocessor, but it also contains other
circuits such as memory devices to store information, interface adapters
to connect it with the outside world, and a clock to act as a master timer
for the system. Figure 2-1 shows a typical microcomputer in which these
additional circuits are added. The arrows represent conductors over
which binary information flows. The wide arrows represent several con-
ductors connected in parallel. A group of parallel conductors which carry
information is called a bus.

*=B8US

INTERFAC
ADAPTER

e s a e e et —— . ——————————
e cccrcccc s cccc e e e e e ee=d

MICROCOMPUTER i/0 PORT

hecssswcancccccccanaccncnn coacncccccccaa -

Figure 2-1
A Basic Microcomputer

Microcomputer Basics

The microcomputer is composed of everything inside the dotted line.
Everything outside the dotted line is referred to as the outside world, and
all microcomputers must have some means of communicating with it.
Information received by the microcomputer from the outside world is
referred to as input data. Information transmitted to the outside world
from the microcomputer is referred to as output data.

Input information may come from devices like paper tape readers, type-
writers, mechanical switches, keyboards, or even other computers. Out-
put information may be sent to video displays, output typewriters, paper
tape punches, or line printers. Some devices such as the teletypewriter
can serve as both an input and an output device. These devices are
referred to as input/output or I/O devices. The point at which the I/O
device connects to the microcomputer is called an 1/O port.

2-7

2-8

UNIT TWO

HEATHKIT
CONTINUING

N

Stored Program Concept

A microcomputer is capable of performing many different operations. It
can add and subtract numbers and it can perform logical operations. It
canread information from an input device and transmit information to an
output device. In fact, depending on the microprocessor used, there may
be 100 or more different operations that the microcomputer can perform.
Moreover, two or more individual operations can be combined to perform
much more complex operations.

In spite of all its capabilities, the computer will do nothing on its own
accord. It will do only what it is told todo, nothing more and nothing less.
You must tell the computer exactly what operations to perform and the
order in which it should perform them. The operations that the computer
can be told to perform are called instructions A few typical instructions
are ADD, SUBTRACT, LOAD INDEX REGISTER, STORE AC-
CUMULATOR, and HALT.

A group of instructions that allow the computer to perform a specific job
is called a program. One who writes these instructions is called a prog-
rammer. To design with microprocessors, the engineer must become a
programmer. To repair microprocessor-based equipment, the technician
must understand programming. Generally, the length of the program is
proportional to the complexity of the task that the computer is to perform.
A program for adding a list of numbers may require only a dozen instruc-
tions. On the other hand, a program for controlling all the traffic lights in
a small city may require thousands of instructions.

A computer is often compared to a calculator, which is told what to do by
the operator via the keyboard. Even inexpensive calculators can perform
several operations that can be compared to instructions in the computer.
By depressing the right keys, you can instruct the calculator to add,
subtract, multiply, divide, and clear the display. Of course, you must also
enter the numbers that are to be added, subtracted, etc. With the cal-
culator, you can add a list of numbers as quickly as you can enter the
numbers and the instructions. That is, the operation is limited by the
speed and accuracy of the operator.

From the start, computer designers recognized that it was the human
operator that slowed the computation process. To overcome this, the
stored program concept was developed. Using this approach, the pro-
gram is stored in the computer’s memory. Suppose, for example, that you
have 20 numbers that are to be manipulated by a program that is com-
posed of 100 instructions. Let’s further suppose that 10 answers will be
produced in the process.

HEATHKIT
CONTINUING
EDUCATION

e e

Microcomputer Basics

Before any computation begins, the 100-instruction program plus the 20
numbers are loaded into the computer’s memory. Furthermore, 10 mem-
ory locations are reserved for the 10 answers. Only then is the computer
allowed to execute the program. The actual computation time might be
less than one millisecond. Compare this to the time that it would take to
manually enter the instructions and numbers, one at a time, while the
computer is running. This automatic operation is one of the features that
distinguishes the computer from the calculator.

Computer Words

In computer terminology, a word is a group of binary digits that can
occupy a storage location. Although the word may be made up of several
binary digits, the computer handles each word as if it were a single unit.
Thus, the word is the fundamental unit of information used in the
computer.

A word may be abinary number that is to be handled as data. Or, the word
may be an instruction that tells the computer which operation it is to
perform. It may be an ASCII character representing a letter of the al-
phabet. Finally, a word can be an ‘‘address” that tells the computer where
a piece of data is located.

Word Length

In the past few years, a wide variety of microprocessors have been de-
veloped. Their cost and capabilities vary widely. One of the most impor-
tant characteristics of any microprocessor is the word length it can
handle. This refers to the length in bits of the most fundamental unit of
information.

The most common word length for microprocessors is 8 bits. In these
units; numbers, addresses, instructions, and data are represented by 8-bit
binary numbers. The lowest 8-bit binary number is 0000 0000, or 00 .
The highestis 1111 1111, or FF 4. In decimal, thisrange is from 0 to 255,.
Thus, an 8-bit binary number can have any one of 256,, unique values.

An 8-bit word can specify positive numbers between 0 and 255,,. Or, if
the 8-bit word is an instruction, it can specify any of 256,, possible
operations. It is also entirely possible that the 8-bit word is an ASCII
character. In this case, it can represent letters of the alphabet, punctuation
marks, or numerals. As you can see, the 8-bit word can represent many
different things, depending on how it is interpreted. The programmer
must insure that an ASCII character or binary number is not interpreted as
an instruction. Later, you will see the consequences of making this
mistake.

2-9

2-10

UNIT TWO

HEATHKIT

CONTINUING
_EDUCATION _

Nt

While the 8-bit word length is the most popular, other word lengths are
sometimes used. The earliest microprocessor used a 4-bit word length,
and four-bit microprocessors are still used in many cases because of their
low cost. A few 12-bit and 16-bit microprocessors have also been de-
veloped.

Longer word lengths allow us to work with larger numbers. For example,
a 16-bit word can represent numbers up to 65,535,,. However, this capa-
bility adds to the complexity and cost of the microprocessor. Because
most microprocessors use 8-bit word lengths, we will restrict our discus-
sion to units of this type.

It should be pointed out that just because the word length is 8-bits, it does
not mean that we are restricted to numbers below 256,,. It simply means
that you must use two or more words to represent larger numbers.

The 8-bit word length defines the size of many different components in
the microprocessor system. For example, many of the important registers
will have 8-bit capacity. Memory will be capable of holding a large
number of 8-bit words. And, the bus which is used to transfer data words
will consist of eight parallel conductors.

Even 16-bit microprocessors use 8-bit segments of data in many applica-
tions. For example, inputs from teletypewriters often consist of 8-bit
ASCIH characters. To distinguish these 8-bit segments of information
from the 16-bit (or longer) word lengths, another term has come into
general use: the term byte. A byte is a group of bits that are handled as a
single unit. Generally, a byte is understood to consist of 8-bits. In the 8-bit
microprocessor, each word consists of one byte. But in the 16-bit
machines, each word contains two bytes. Figure 2-2 illustrates these
points.

HEATHKIT
CONTINUING

e

Microcomputer Basics 2'1 1

ONE BYTE

sSIT 7 Ll L Ll 02027 BIT O

\ J

—
ONE WORPD

HIGHER ORDER LOWER ORDER
8YTE 3YTE
A A

211 ~{oJolo[ofo [oﬁ[oﬂa[oio]o[o[o[o]oﬁ\“ P

OME WORD

Figure 2-2
Words and Bytes.

Figure 2-2 also shows how the bits that make up the computer word are
numbered. The least significant bit (LSB) is on the right while the most
significant bit (MSB) is on the left. In the 8-bit word, the bits are num-
bered 0 through 7 from right to left. In the 16-bit word, the bits are
numbered 0 through 15 as shown. The lower 8-bits are called the lower
order byte while the upper 8-bits are called the higher order byte.

2-12

HEATHKIT

UNIT TWO m‘,%"ﬁ#

Self-Test Review

1. Explain the difference between a microprocessor and a microcom-
puter.

2. What is a bus?

3. Explain the difference between input and output data.

4, Define I/0O.

5. The point at which data enters or leaves the computer is called an
I/O

6. The operations that the computer can be told to perform are called

7. What is a program?

8. Explain what is meant by ‘“‘stored program concept.”

9. A byte generally consists of bits.

10. A computer word may consist of one or more

11. What is the largest number that can be represented by an 8-bit
computer word? By a 16-bit word?

HEATHKIT
CONTINUING
EDUCATION

= e

Microcomputer Basics

Answers

10.

11.

A microprocessor is a logic element that can perform a variety of
arithmetic, control, and logic operations. A microcomputer is a
system that consists of a microprocessor, memory, interface adapt-
ers, clock, etc.

A bus is a group of conductors over which information can be
transmitted. The conductors may be wires in a cable, foil patterns
on a printed circuit board, or microscopic metal deposits in a
silicon chip.

Input data is information that is entered into the computer from the
outside world. Output data is information that is transmitted from
the computer to the outside world. The outside world is defined as
anything outside the computer.

I/O is the abbreviation for input-output. Thus, a device that can
send data to and accept data frqm the computer is called an 1/O
device.

Port.

Instructions.

A program is a group of instructions that tell the computer the
operations to be performed and the sequence in which they are to
be performed.

The stored program concept refers to the technique of storing the
instruction to be performed in the memory section along with the
data that is to be operated upon.

8.

Bytes.

1111 1111, or 2554. 1111 1111 1111 1111, or 65,535,,.

2-13

2-14

UNIT TWO

HEATHIIT

CONTINUING
 EDUCATION

Figure 2-3 , ——
The Basic Microcomputer

"

AN ELEMENTARY MICROCOMPUTER

One of the difficulties yvou may encounter in learning about a mi-
crocomputer for the first time is the complexity of its main component —
the microprocessor. The microprocessor may have a dozen or more regis-
ters varying in size from 1 bit to 16 bits. It will have scores of instructions,
most of which can be implemented several different ways. It will have
data, address, and control buses. In short, it can be very intimidating to
start out by considering a full-blown microprocessor.

A better approach is to start with a “‘stripped down” version. By initially
omitting some of the processor’s advanced features, we arrive at a device
that can bereadily understood and vet maintains the characteristics of an
actual microprocessor. Strictly speaking, the microprocessor developed
in this unit is hypothetical in nature. However, it is so close to the real
thing that the programs we develop for it will actually run on the ET-3400
Microprocessor Trainer. Also, as you will see later, one of the most
popular microprocessors in use today is a vastly advanced version of our
elementary model.

A block diagram of a basic microcomputer is shown in Figure 2-3, which
shows the microprocessor, the memory, and the /O circuitry. For
simplicity, we will ignore the I/O circuitry in this unit. We can do this by
assuming that the program and data are already in memory and that the
results of any computations will be held in a register or stored in memory.
Ultimately of course, the program and data must come from the outside
world and the results must be sent to the outside world. But we will save
these procedures until a later unit. This will allow us to concentrate on
the microprocessor unit and the memory.

WICRO-
PROCESSOR :

DATA
ADDRESS 5US

BUS ~

INTFRFACE [
ADAPTER &

HEATHKIT
CONTINUING
EDUCATION _

Microcomputer Basics 2-1 5

o

The Microprocessor Unit (MPU)

The microprocessor unit is shown in greater detail in Figure 2-4.
simplicity, only the major registers and circuits are shown. In

For
our

elementary unit most of the counters, registers, and buses are 8-bits wide.

That is, they can accomodate 8-bit words.

MICROPROCESSOR UNIT l-Crc c

(MPU)
ARITHMETIC |
LOGIC UNIT |

FETCH EXECUTE
CONTROL CONTROL

CONTROLLER
SEQUENCER |

1

1

1

1

1

1

1

1

1

1

1

1

1

]

1

1

1

1 Procram

— 3 COUNTER

]
\
1
]
1
1
1
i
1
i
\
1
1
1
1
]
1
1
1
1

INSTRUCTIO
DECODER

ADDRESS
REGISTER
B X P S A S

—_ beaccconnoe ceocscceccaaaaa= P L L LT T TP RPRp R i |

- ADDRESS F—>

DATA
REGISTER

256 BYTES OF
ANDOM ACCES
WEMORY RALUES

N
INPUT-QUTPUT
/0
Figure 2-4

An Elementary Microprocessor.

CLoCK
AND
CONTROL
LINES

2-16

UNIT TWO

HEATHKIT

CONTINUING
'EDUCATION

Figure 2-5
The Arithmetic Logic Unit.

One of the most important circuits in the microprocessor is the arithmetic
logic unit (ALU). Its purpose is to perform arithmetic or logic operations
on the data words that are delivered to it. The ALU has two main inputs.
One comes from a register called the accumulator, and the other comes
from the data register. The ALU can add the two input data words
together, or it can subtract one from the other. It can also perform some
logic operations which will be discussed in later units. The operation that
the ALU performs is determined by signals on the various control lines
(marked C on the block diagram).

Generally, the ALU receives two 8-bit binary numbers from the ac-
cumulator and the data register as shown in Figure 2-5A. Because some
operation is performed on these data words, the two inputs are called
operands.

ldcvch
>
-
[
l»-‘cvz-l
.

Alﬂlﬂhu-ﬁlﬂiﬁﬂi

ACCUMULATOR
QPERAND 1 = 95 or 1001,

AIEIEIEIEIII" '

DATA REG!STER
OPERAND 2 +71q or 111,

5 . '}

¢ g

:l : " &)
INPUT 1

ACCUMULATOR
SUM = 1674 or 10000,

"”"’4"
[oofolo]oj 1]

DATA REGISTER

HEATHKIT
CONTINUING

Microcomputer Basics 2'1 7

The two operands may be added, subtracted, or compared in some way,
and the result of the operation is stored back in the accumulator. For
example, assume that two numbers (7 and 9) are to be added. Before the
numbers can be added, one operand (9) is placed in the accumulator; the
other (7) is placed in the data register. The proper control line is then
activated to implement the add operation. The ALU adds the two num-
bers together, producing their sum (16,,) at the output. As shown in
Figure 2-5B, the sum is stored in the accumulator, replacing the operand
that was originally stored there. Notice that all the numbers involved are
in binary form.

The accumulator is the most useful register in the microprocessor. Dur-
ing arithmetic and logic operations it performs a dual function. Before the
operation, it holds one of the operands. After the operation, it holds the
resulting sum, difference, or logical answer. The accumulator receives
several instructions in every microprocessor. For example, the “load
accumulator” instruction causes the contents of some specified memory
location to be transferred to the accumulator. The “‘store accumulator”
instruction causes the contents of the accumulator to be stored at some
specified location in memory.

The data register is a temporary storage location for data going to or
coming from the data bus. For example, it holds an instruction while the
instruction is being decoded. Also, it holds a data byte while the word is
being stored in memory.

The MPU also contains several other important registers and circuits: the
address register, the program counter, the instruction decoder, and the
controller-sequencer. These are shown in Figure 2-4.

The address register is another temporary storage location. It holds the
address of the memory location or I/O device that is used in the operation
presently being performed.

The program counter controls the sequence in which the instructions in
a program are performed. Normally, it does this by counting in the
sequence, 0, 1, 2, 3, 4, etc. At any given instant, the count indicates the
location in memory from which the next byte of information is to be
taken.

The instruction decoder does just what its name implies. After an in-
struction is pulled from memory and placed in the data register, the
instruction is decoded by this circuit. The decoder examines the 8-bit
code and decides which operation is to be performed.

2-18

UNIT TWO

—_
HEATHKIT
CONTINUING
_EDUCATION

Nt

The controller-sequencer produces a variety of control signals to carry
out the instruction. Since each instruction is different, a different combi-
nation of control signals is produced for each instruction. This circuit
determines the sequence of events necessary to complete the operation
described by the instruction.

Later you will see how these various circuits work together to execute
simple programs. But first, take a closer look at the memory for our
microcomputer.

Memory

A simplified diagram of the 256- word, 8-bit read/write memory that is
used in our hypothetical microcomputer is shown in Figure 2-6. The
memory consists of 256, locations, each of which can store an 8-bit word.
This size memory is often referred to as 256 x 8. A read/write memory is
one in which data can be written in and read out with equal ease.

L EE T L L L P L

ADDRESS 3

FROM
MICROPROCESSOR

~ -
TO/FRC.A
\ICROPROCESSOR

{ LGCATION D

LODRESS

ADDRESS DECODER
3US

| LOCATION F

READ/WRITE

COMMAND FROM —"—"'l CONTROL
WICROPROCESSGR 1

- - - - - - - - - - - - - - od

Figure 2-6
The Random Access Memory.

Two buses and a number of control lines connect the memory with the
microprocessing unit. The address bus will carry an 8-bit binary number,
which can specify 256,, locations, from the MPU to the memory address
decoder. Each location is assigned a unique number called its address.
The first location is given the address 0. The last locaticn is given the
address 255,5, which is 1111 1111 in binary and FF in hexadecimal. A
specific location is selected by placing its 8-bit address cn the address
bus. The address decoder decodes the 8-bit number and selects the proper
memory location.

HEATHKIT

CONTINUING

Microcomputer Basics

"

The memory alsoreceives a control signal from the MPU. This signal tells
the memory the operation that is to be performed. A READ signal indi-
cates that the selected location is to be read out. This means that the 8-bit
number contained in the selected location is to be placed on the data bus
where it can be transferred to the MPU.

The procedureisillustrated in Figure 2-7. Assume that the MPU is toread
out the contents of memory location 04 . Let’s further assume that the
number stored there is 97 ;. First, the MPU places the address 04,5 on the
address bus. The decoder recognizes the address and selects the proper
memory location. Second, the MPU sends a READ signal to the memory,
indicating that the contents of the selected location are tobe placed on the
data bus. Third, the memory responds by placing the number 97,4 on the
data bus. The MPU can then pick up the number and use it as needed.

®

ADJRESS
9009 9100

LOCATIONS

Figure 2-7

Reading from Memory.

It should be pointed out that the process of reading out a memory location
does not disturb the contents of that location. That is, the number 97,4
will still be present at memory location 04 after the read operation is
finished. This characteristic is referred to as nondestructive readout
(NDROQ). It is an important feature because it allows us to read out the
same data as many times as needed.

2-19

2-20

UNIT TWO

HEATHKIT
CONTINUING
EDUCATION

S ETE e

=

The MPU can also initiate a WRITE operation. This procedure is illus-
trated in Figure 2-8. During a WRITE operation, a data word is taken from
the data bus and placed in the selected memory location. For example,
let’s see how the MPU can store the number 52,5 at memory location 03.
First, the MPU places the address 03 ou the address bus. The decoder
responds by selecting memory location 03. Second, the MPU places the
number 52, on the databus. Third, the MPU sendsthe WRITE signal. The
memory responds by storing the number contained on the data bus in the
selected location. That is, 52,¢ is stored in location 03. The previous
contents of the selected location are lost as the new number is written in
that location.

DATA FROM
MPU
0101 0010

MEMORY
LOCATION

ADDRESS
0000 0011

ADDRESS

ADDRESS DECODER

BUS

* ”
WRITE
”)

Figure 2-8
Writing into Memory.

The accepted name for a memory of this type is Random Access Memory
(RAM). “Random access’ means that all memory locations are equally
accessible. However, in recent years RAM has come to mean a random
access read/write memory. As you will see later, there is another type of
memory called aread only memory (ROM). It is alsorandomly accessible,
but it does not have a write capability. Today, the accepted definition of
RAM is a random access read/write memory. A read only memory,
although it is randomly accessible, is called a ROM and never a RAM.

HEATHKIT

Microcomputer Basics

Fetch-Execute Sequence

When the microcomputer is executing a program, it goes through a
fundamental sequence that is repeated over and over again. Recall that a
program consists of instructions that tell the microcomputer exactly what
operations to perform. These instructions must be stored in an orderly
manner in memory. Instructions must be fetched, one at a time, from
memory by the MPU. The instruction is then executed by the MPU.

The operation of the microcomputer can be broken down into two phases,
as shown in Figure 2-9. When the microprocessor is initially started, it
enters the fetch phase. During the fetch phase, an instruction is taken
from memory and decoded by the MPU. Once the instruction is decoded,
the MPU switches to the execute phase. During this phase, the MPU
carries out the operation dictated by the instruction.

FETCH : EXECUTE

AN : THE :
INSTRUCTION 7 INSTRUCTION

Figure 2-9
The Fetch-Execute Sequence.

The fetch phase always consists of the same series of operations. Thus, it
always takes the same amount of time. However, the execute phase will
consist of different sequences of events, depending on what type of
instruction is being executed. Thus, the time of the execute phase may
vary considerably from one instruction to the next.

A Sample Program

Now that you have a general idea of the registers and circuits found in a
microcomputer, we will examine how all these circuits work together to
execute a simple program. At this point, we are primarily interested in
showing you how the micreccomputer operates. Therefore, the program
will be a very trivial one.

2-21

2-22

UNIT TWO

HEATHKIT
CONTINUING
_EDUCATION

Let’s see how the computer goes about solving a problem like 7 + 10 = ?
While this seems like an incredibly easy problem, the computer, if left to
its own resources, does not have the foggiest notion of how to solve it.
You must tell the computer how to solve the problem right down to the
smallest detail. You do this by writing a program.

Before you can write the program you must know what instructions are
available to you and the computer. Every microprocessor comes with a
listing of its instruction set. Assume that, after looking over the list, you
decide that three instructions are necessary to solve the problem. These
three instructions and a description of what they do are shown in Figure
2-10.

NAME MNEMONIC OPCODE DESCRIPTION
Load Accumulator LDA 1000 0110, Load the contents of the next memory
or location into the accumulator.
86,5
Add ADD 1000 1011, Add the contents of the next memory
or location to the present contents of the
8B accumulator. Place the sum in the
accumulator.
Hait HLT 0011 1110, Stop all operations.
or
3E
Figure 2-10

Instructions Used in the Sample Program.

The first column in the table gives the name of the instruction. When
writing programs, it is often inconvenient to write out the entire name.
For thisreason, each instruction is given an abbreviation or amemory aid
called amnemonic. The mnemonics are given in the second column. The
third column is called the operation code or opcode. This is the binary
number that the computer and the programmer use to represent the
instruction. The opcode is given in both binary and hexadecimal form.
The final column describes exactly what operation is performed when
the instruction is executed. Study this table carefully; you will be using
these instructions over and over again.

HEATHKIT
CONTINUING
EDUCATION

S e

Microcomputer Basics

Assume that you wish to add 7 to 10,, and place the sum in the ac-
cumulator. The program is an elementary one. First you will load 7 into
the accumulator with the LDA instruction. Next, you will add 10,, to the
accumulator using the ADD instruction. Finally, you will stop the com-
puter with the HLT instruction.

Using the mnemonics and the decimal representation of the numbers to
be added, the program looks like this:

LDA 7
ADD 10
HLT

Unfortunately, the basic microcomputer cannot understand mnemonics
or decimal numbers. It can interpret binary numbers and nothing else.
Thus, you must write the program as a sequence of binary numbers. You
can do this by replacing each mnemonic with its corresponding opcode
and each decimal number with its binary counterpart.

That is:
LDA 7 becomes 1000 0110 0000 0111
opcode from binary representation
Figure 2-10 for 7
And:
ADD 10 becomes 1000 1011 0000 1010
opcode from binary representation
Figure 2-10 for 104,
Finally,
HLT becomes 0011 1110

opcode from
Figure 2-10

Notice that the program consists of three instructions. The first two
instructions have two parts: an 8-bit opcode followed by an 8-bit operand.
The operands are the two numbers that are to be added (7 and 10,,).

2-23

2-24

UNIT TWO

_—
HEATHKIT
CONTINUING
_EDUCATION

s

Recall that the microprocessor and memory work with 8-bit words or
bytes. Because the first two instructions consist of 16-bits of information,
they must be broken into two 8-bit bytes before they can be stored in
memory. Thus, when the program is stored in memory, it will look like
this:

1st Instruction 1000 0110 Opcode for LDA
0000 0111 Operand (7)

2nd Instruction { 1000 1011 Opcode for ADD
0000 1010 Operand (10,)

3rd Instruction 0011 1110 Opcode for HLT

Five bytes of memory are required. You can store this 5-byte program any
place in memory you like. Assuming you store it at the first five memory
locations, the memory can be diagrammed as shown in Figure 2-11.

ADDRESS MEMORY
BINARY
HEX BINARY CONTENTS MNEMONICS/CONTENTS
00 0000 0000 10000110 LDA
01 0000 0001 00000111 7
02 0000 0010 10001011 ADD
03 0000 0011 00001010 10,
04 0000 0100 00111110 HLT
et e pnn,,
. —
FD 1111 1101
FE 1111 1110
FF 1111 1111
Figure 2-11

The Program in Memory.

Notice that each memory location has two 8-bit binary numbers as-
sociated with it. One is its address, the other is its contents. Be careful not
to confuse these two numbers. The address is fixed. It is established when
the microcomputer is built. However, the contents may be changed at any
time by storing new data.

Before you see how this program is executed, let’s review the material

covered in this section.

HEATHKIT

CONTINUING Microcomputer Basics | 2-25
EDUCATION

Sms s e e

Self-Test Review

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

28.

~

The circuit in the microprocessor that performs arithmetic and
logic operations is called the

The numbers that are operated upon by the computer are called

Where are the two operands held as they are transferred to the
ALU?

Where is the result held after an arithmetic operation?

Which register in the MPU holds the instruction while the opcode
is being decoded?

Which circuit in the MPU determines the memory location from
which the next byte of information will be taken?

Which register holds the address while it is being decoded?
How many memory locations can be specified by an 8-bit address?

Explain the 3-step procedure for writing the number 34, into
memory location 9.

Define mnemonic.
Define opcode.

Define RAM.

An instruction is retrieved from memory and decoded during the
phase.

The operation indicated by the instruction is carried out during the
phase.

In our hypothetical microcomputer, the mnemonic for the load
accumulator instruction is

The opcode for the halt instruction is

When the ADD instruction is executed, where is the SUM stored?

2-26

UNIT TWO

29.

30.

How many memory locations are required to store the following
program?

LDA 13y
ADD 17,
ADD 10,
HLT

What will be the contents of the accumulator after this program is
executed?

fwﬂ'gﬂf Microcomputer Basics 2‘27
_SOUCATIOR }
Answers
12. Arithmetic logic unit (ALU).
13. Operands.
14. One is held in ~the accumulator; the other in the data register.
15. In the accumulator.
16. Data register.
17. The program counter.
18. The address register.
19. 28 = 256,,.
20. Step 1. The address 9 is placed on the address bus.
Step 2. The data 34,4 is placed on the data bus:
Step 3. The read/write line is switched to the write state.
21. A mnemonic is an abbreviation or memory aid.
22. Anopcode is a binary number that tells the microproces-
sor which instruction to execute.
23. RAM has come to mean a random access read/write mem-
ory.
24. Fetch.
25. Execute.
26. LDA.
27. 0011 1110,.
28. In the accumulator.
29. Seven.
30. 40,, or 101000,.

2-28

UNIT TWO

_
HEATHKIT
CONTINUING

_EDUCATION

EXECUTING A PROGRAM

Before a program can be run, it must be placed in memory. Later, you will
see how this is done. For now, assume that we have already loaded the

program developed in the previous section.

The important registers of the microcomputer are shown in Figure 2-12.
Notice that our 5-byte program for adding 7 and 10,,is shown in memory.
The following paragraphs will take you through the step-by-step proce-
dure by which the computer executes this program.

rPresscacesscccasaacaaa

! MICROPROCESSOR UN
(MPU)

P - - - - - - - - - . - - - -

ACCUMULATOR

SToleolor0]) s

IT

LOGIC UNIT

(LT T EZT A ADCRESS
IRERREEN BT

MEMORY

ADDRESS

BINARY
CONTENTS

ANEVIONICS/ b+

DECIMAL

CONTENTS (4

0000 0009

1060 C110

LDA

0000 0001

G00C 2111

7

0000 2010

1060 1011

ADD

0000 0011

0900 1019

10

0000 0i00

Q011 1110

HLT

0 i W

Figure 2-12

1
H

1

'

1

i

...................... i
ALY i e &]
CONTROLLER-FF |
SEQUENCER | I
i

1

i

1

.......... i
....... !
insTrucTionf{
DECODER !
i

1

I

DATA]

REGISTER |

The Program Counter is Set to the Ad-
dress of the First Instruction.

To begin executing the program, the program counter must be set to the
address of the first instruction. In this case, the first instruction is in
memory location 0000 0000, so the program counter is set accordingly.
The procedure for setting the program counter to the proper address will

be discussed later.

Microcomputer Basics

The Fetch Phase

The first step is to fetch the first instruction from memory. The sequence
of events that happen during the fetch phase is controlled by the
controller-sequencer. It produces a number of control signals which will
cause the events illustrated in Figure 2-13 through 2-17 to occur.

First the contents of the program counter are transferred to the address
register as shown in Figure 2-13. Recall that this is the address of the first

instruction.

T e LE L L e DL |

: MICROPROCESSOR UNIT
(MPU)

WMNEMONY

avomess | SIARY s -
- CONTENTS 4

0000 0000 1000 G110 LDA
0000 0001 0000 0111 7
0000 0010 1000 1011 ADD
0000 001! 0000 1010 10
3000 0100 Q011 1110 HLT /
S e i T gl N

Figure 2-13

The Contents of the Program Counter
are Transferred to the Address Regis-

ter.

'
I i
H ARI 1
1 wosicuniT By '
: (ALUY ; S 1
1 conTROLLER-F] |
: SEQUENCER '
! 1
! 1
: ACCUMULATOR 1
' —
........ H
: ﬁ' PROGRAM iNsTRucTionbf
' ’ COUNTER 0ECODER :
1 : / H
: 1
: : ’
(LT LT T2 (o 2 e Loy 1
1 ADDRESS ’ :
i |o[o[o]olo[0]0[o} Jrecisier [[T [T Voan o
1 REGISTER |
»

2-29

HEATHKIT
2-30 | uniT WO ol

Once the address is safely in the address register, the program counter is
incremented by one. That is, its contents change from 0000 0000 to 0000
0001 (Figure 2-14). Notice that this does not change the contents of the
address register in any way.

B e EaoEeeeeeeEeeREEES=""

! MICROPROCESSOR UNIT
(MPU)

ARITHMETIC
LOGIC UNIT
(ALU)

CONTROLLER-
SEQUENCER

accumuLaTor [|

Wﬂ’w’ﬂﬂ”
[o]o]o[ofo[o]o[1]) tounrer.
(ehtenfoeiop e (TITLIITY
0]o]ofolo[o]0[0}) reciser BREREEEN N

REGISTER |

-
CLL L DL ELEL DL T EE e Yy ey

DECODER

Figure 2-14
The Program Counter is Incremented.

CONTINUING Microcomputer Basics | 2-31

Next, the contents of the address register (0000 0000) are placed on the

address bus (Figure 2-15). The memory circuits decode the address and
select memory location 0000 0000.

'--1

: MICROPROCESSOR UNIT :
H (MPU) H
i [
i LOGIC UNIT - H
! (ALU) = 1
: CONTROLLER- H
' SEQUENCER !
| '
i ACCUMULATOR5 i
! 1
1 H
V Ll ol Lol Lod] pROGRAM 1
' ﬂﬂﬂﬂﬂﬂﬂﬂ COUNTER " SDTEZL:)?EIRO N !
! 1
i i
i :
|\ [ZFTTETT A a00REsS (T T EF TR !
i (ofofolofololelol arcrswn (LTTTTTTH oam
! i, REGiSTER §
[Y

A S Lol |
i

0000 0000 | 1000 0110

Figure 2-15
The Address of the First Instruction is
Placed on the Address Bus.

2-32

UNIT TWO

HEATHKIT

CONTINUING
JEDUCATION

——

The contents of the selected memory location are placed on the data bus
and transferred to the data register in the MPU. After this operation, the
opcode for the LDA instruction will be in the data register as shown in
Figure 2-16.

T T |
: MICROPROCESSOR UNIT
(MPU)

ARITHMETIC |
LOGIC UNIT
TALUY

CONTROLLER- |
SEQUENCER

0[o[ofo]o] CouNTER

DECODER

>

O

o

<

=

c

-

>

-t

o

el

(R
g gy

””‘”" ADDRESS

[0]oJo]0]0]ofo]o]) ecis in 110[0[0]o] 1[110L) 5a:a

crerl
) REGISTER
RSN /. RS

DATAZ

'BUS.

” 2%

S B ANMOREE ST 7

BN 8 Yt
ADBRESS: | éi R‘ CTUOETENAL S /

o LN conFENT S
0000 0000 | 1000 2110 LOA
0009 poet | oBoo oIt 7
06090010 -{ 1000 10}
-0000- 0011 | 0060° 1016
0000 0100

Figure 2-16

The Opcode of the First Instruction is
Placed on the Data Bus.

Microcomputer Basics

The next step is to decode the instruction (Figure 2-17). The opcode is
transferred to the instruction decoder. This circuit recognizes that the
opcode is that of an LDA instruction. It informs the controller-sequencer
of this fact and the sequencer produces the necessary control pulses to
carry out the instruction. This completes the fetch phase of the first
instruction.

P et L L L L L L

: MICROPROCESSOR UNIT 1
H (MPU) R AERTERRRREaTEY :
: ARITHMETIC T ? 1
] LOGIC UNIT | !
! ot 1
! ALL i 1
1 CONTROLLER - H
: SEQUENCER :
! 1
: > 2 1
! ACCUMULATOR LDA 1
] > > 1
! 1
1 ;

| Auva"‘w‘r’ PROGRAM narRucTion 1
1 Eﬂﬂﬂﬂﬂm COUNTER o CODER H
] RIEN £F

I i
! 1
i £ :
! la'”m"." ADDRESS ‘-’ﬂnr’ !
1 lofojojo[o[ojo[o}/ recister [11010j0l0 1110}/ 555 1
i REGISTER]
(T L L T T T T T T T Py Y P e T T)

MEWMORY

i ANEMONIESH
A ENARY
ARORESS: | _E ”; o | DECHSAL

| CONIENIRE Contents:

00070000 | 1000 0VL0:] L toN.

600 400 |, 600T 01 | 7

0000 3010 1000 10E |0 a0D

o0 5011 |

0000 0100 | 0

Figure 2-17
The Opcode is Decoded.

2-33

2-34

UNIT TWO

The Execute Phase

The first instruction was fetched from memory and decoded during the
fetch phase. The MPU now knows that this is an LDA instruction. During
the execute phase, it must carry out this instruction by reading out the
next byte of memory and placing it in the accumulator.

The first step is to transfer the address of the next byte from the program
counter to the address register (Figure 2-18). You will recall that the
program counter was incremented to the proper address (0000 0001)
during the previous fetch phase.

poae ceoceccevevcvvvocee

: MICROPROCESSOR UNIT

1

1
1 (MPU) g — :
: ARITHMETIC | '
1 LOGIC UNIT | :
H (ALY 1l 1
I CONTROLLER-F4 |
1 SEQUENCER :
: '
! '
! 1
H 1
! 7
1 PROGRAM INSTRUCTION !
1 COUNTER -
] DECODER i
! '
I :
1 1
i ‘ !
: E’éﬂ'ﬂ’é’x”ﬂ ADDRESS ’ww,oaraﬂqr’ :
: [olofo[) recisrer [10[010J0] 1[1]0}) para 1
»

‘0000 oo0g.
o006 8ot |

Figure 2-18
The Contents of the Program Counter
are Transferred to the Address Regis-
ter.

—_——
HEATHKIT
CONTINUING Microcomputer Basics | 2-35

The next two operations are shown in Figure 2-19. First, the program
counter is incremented to 0000 0010 in anticipation of the next fetch
phase. Second, the contents of the address register (000 0001) are placed
on the address bus.

U 5 o % o D D R O S S SR A SR S SN AD R S S S S D R D O SR D 6D W @ @ -

: MICROPROCESSOR UNIT
(MPU) e

LOGIC UNIT }
ALY

CONTROLLER-
SEQUENCER

AccumuLAToR | |

o[olofofo[o[1[0}/ counter

(T LT ET T AODRESS awww&rwag
o[ojojojojo[o] 1] recister [1[0[0[0]o[t[1]0}) oara 1
REGISTER |

INSTRUCTION
DECODER

1
1
]
[]
[]
]
[}
[}
[}
]
]
]
]
]
]
]
]
]
]
[]
]
]
]
[]
[]
[]
[]
[]
]

000 0001
4660

Figure 2-19
The Program Counter is Incremented;
the Contents of the Address Register
are Placed on the Address Bus.

2-36

UNIT TWO

HEATHKIT
CONTINUING
_EDUCATION

a4

The address is decoded and the contents of memory location 0000 0001
are loaded into the data register as shown in Figure 2-20. Recall that this
is the number 7. An instant later, the number is transferred to the ac-
cumulator. Thus, the first execute phase ends with the number 7 in the
accumulator.

P T e L EE L L L L P L L L L

! MICROPROCESSOR UNIT

1
1
1 (MPU) SRRCNREREERARSIES :
: ARITHMETIC | !
1 LOGIC uNIT H
1 CONTROLLER- H
: SEQUENCER :
1
1 Lol B L :
: ACCUMULATOR O|O{0]0}0O|1(1 1 1
1
1 = 1
1 = 882000 53
\ LT TTTTET D /////?// neTRuCTION H
! 0/olojo ’ - vEIRUCT i
] o[o[ojojojoft]o}), N ,
H COUNTER !
: 1
1 = :
: Ol & Ll Y ADDRESS o il i L :
: Emmmmmn’ REGISTER 0|0|0]0]Of1{1{1L) sara 1
! = REGISTER |
tecsssccaencaccaaan cocccasccscsaaaal ATA Aew -
i § ANENORILS/. _
ADDRESS T BLiARY DECTMAL /
i y CONTENTS /

: CUNTERTS
4000 0000 1 EQU0 Q110 b 1OA

G000 0001 | 9000 O111 7
0080610 | 10001011 | 20b

6000 30FL | 0695 10101 L0
050 0100 0 L MDY . WL

Figure 2-20
The First Operand is Transferred to the
Accumulator Via the Data Register.

Fetching the Add Instruction

The next instruction in our program is the ADD instruction. It is fetched
from memory using the same procedure outlined above. Figure 2-21
illustrates this five-step procedure:

1. The contents of the program counter (0000 0010) are transferred
to the address register.

HEA'“H(" | |
cg“u?:ﬂouuc Microcomputer Basics J 2-37

2. The program counter is incremented to 0000 0011.
3. The address is placed on the address bus.

4. The contents of the selected memory location are transferred to
the data register.

5. The contents of the data register are decoded by the instruction
decoder.

LI L LD L D D et e tl bt bl b b L L |

! MICROPROCESSOR UNIT

QECODER

L/} ADDRESS Ll Lo Ly
REGISTER 110|0|0{1{0}{1]1L] 5ara
REGISTER |}

R —— © TYRTY pey Ry Rt

S 4 BUS 7

i
! e]
H (MPU) e g 1
' ARITHMETIC L !
h LOGIC UNIT i
: (ALUD = 1
! controtter-f{ 4
: SEQUENCER :
| ACCUMULATOR oo H
H ! - »
: @ ’Aio* :

-]

H SRRRRORARSEER RERRER 1
\ LT T T T .
' ' PROGRA instRucTion by
\ COUNTER & I
:]
H '
! '
! :
!]
!]
! i
!]
1
i
[

, M E MORY

= APPEreeCoI i 4
aopaess o0 VAR Gprn §
T F CANTENTS fir e

0600 0050: | 1000 0110 |
0006 3061 | 00608111
0000 2019 1000 1911)
0600 8011 00061050 YR
6008 010G § 00kE 1Ike] T HLE

Figure 2-21
Fetching the ADD Instruction.

The data word fetched from memory is the opcode for the ADD instruc-
tion. Thus, the controller-sequencer produces the necessary control
pulses to execute this instruction.

2-38

UNIT TWO

—_—
HEATHKIT
CONTINUING
EDUCATION

Nt

Executing the Add Instruction

The execution of the ADD instruction is a six-step procedure. This proce-
dure is illustrated in Figure 2-22.

1.

5A.

5B.

The contents of the program counter (0000 0011) are transfer-
red to the address register.

The program counter is incremented to 0000 0100 in anticipa-
tion of the next fetch phase.

The address of the operand is placed on the address bus.
The operand (10,,) is transferred to the data register.
The operand (10,,) is transferred into one input of the ALU.

Simultaneously, the other operand (7) is transferred from the
accumulator to the other input of the ALU.

The ALU adds the two operands. Their sum (0001 0001, or
17,) is loaded into the accumulator, destroying the number (7)
that was previously stored there.

HEATHKIT
CONTINUING
EDUCATION

Microcomputer Basics 2- 39

F--1

: MICROPROCESSOR UNIT
(MPU)

ARITHUETIC
LOGIC UNIT
ALy

CONTROLLER }
SEQUENCER

INSTRUCTION
OECODER

ADDRESS A
REGISTER 0{0{0]|0} 1{0,1|0}) 5414
; REGISTER g

—ceecececccceeamoomoswsf cocececcceee

" MEMORY

' SNENONIESH
aporEss | o ARY BECIMAL
CONTERTS | conrents

0000 2080 { 12000110] ¢ 0A

0608.000F § 7908 D1t 7
9608 0018 | 1000 1011 AaD
0000 0011 | 2000 1019 1o

9405 0100 1 GOIE 1TL0 [MLT

- Figure 2-22
Executing the ADD Instruction.

The computation portion of our program ends with the sum of the two
operands in the accumulator. However, the program is not finished until
— it tells the computer to stop executing instructions.

2-40

UNIT TWO

HEATHKIT
CONTINUING
EDUCATION

Nt

Fetching and Executing the HLT Instruction

The final instruction in the program is a HLT instruction. It is fetched
using the same fetch procedure as before. The five steps are illustrated in
Figure 2-23. The address comes from the program counter via the address
register. When this address is placed on the address bus, memory loca-
tion 0000 0100 is read out and the opcode for HLT is loaded into the data
register. The opcode is decoded and the instruction is executed.

The execution of the HLT instruction is very simple. The controller-
sequencer simply stops producing control signals. Consequently, all
computer operations stop. Notice that the program has accomplished our
objective of adding 7,, to 10,,. The resulting sum, 17, is in the ac-
cumulator.

T e L L L L L L LT

: MICROPROCESSOR UNIT 1
H (MPU) T :
: ARITHMETIC !
1 LOGIC UNIT | !
: (ALY . 1
' controvter-E 1
: SEQUENCER '
1

' [LTT T T TT T ¥ !
! accunuiator lolojol t{ojojo] 1} *Hu: !

S

' mﬂ’”awmi SROGRAM S !
) mﬁﬁmm COUNTER) !
1 o——— DECODER :
H)
: 1
| i
1 L ADORESS H
! oi0] REGISTER 1
‘) .

- ——— - - - - - - - - - - - - .

IREMONICSE
DECIYMAL |
CONTENTS

0808 0000 | LOOSOTLO | LoA
0008 0001 | Goeg ANITL 7
0060 0OTA | 1000 LOLL |~ ABD
0008 3911 | Goco tote [a
2000 G190 | 0811 §110 LT

"MEMO
L RINARY

ADORES S CBNFENTS

Figure 2-23
Fetching and Executing the HLT In-
struction.

Microcomputer Basics

Self-Test Review

Examine this sample program carefully and answer the questions below:

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

LDA 8
ADD 7
ADD 4
HLT

During the first fetch phase, what binary number is loaded into the
data register?

During the first execute phase the number 0000 1000, is loaded into
the

During the second fetch phase, what binary number is loaded into
the data register?

If the first byte of the program is placed in address 0000 0000, what
is the address of the first ADD instruction?

How many bytes of memory are taken up by the program?
What number is in the accumulator during the third fetch phase?

When the program is finished running, what number is in the
accumulator? . :

What is the final number in the program counter?
What are the final contents of the address register?

What are the final contents of the data register?

2-41

2-42

UNIT TWO

_
HEATHKIT
CONTINUING

EDUCATION |

"

Answers

31. The opcode for the LDA instruction, 1000 0110,.
32. Accumulator.

33. The opcode for ADD, 1000 1011.

34. 0000 0010,.

35. Seven.

36. 15, or 0000 1111..

37. 19, or 0001 0011..

38. 7, 0r 0000 0111,.

39. 6, or 0000 0110..

40. The opcode for the HLT instruction, 0011 1110,.

CONTINUING Microcomputer Basics

HEATHKIT 9-43

ADDRESSING MODES

If you examine the program discussed in the previous section, you will
— find that it uses two distinctly different types of instructions. One type of

instruction requires an operand. LDA and ADD are examples of this type.

These are two-byte instructions. The first byte is the opcode; the second is
— the operand. ' '

Microprocessors also have single-byte instructions. HLT is a good exam-
- ple. This instruction requires no operand; thus, it can be implemented
with a single byte.

- Instructions can be classified in several different ways. One of the most
basic distinctions is their addressing mode. The addressing mode refers
to the method by which an instructicn addresses its operand.

2-44

UNIT TWO

Inherent or Implied Addressing

Single-byte instructions have no operand or the operand is implied by the
opcode itself. For example, the HLT instruction has no operand at all.
However, some single-byte instructions may have an implied operand.
An example is the “increment accumulator” instruction. The number
that is operated upon (incremented) is the number in the accumulator.
This instruction simply adds one to the contents of the accumulator. This
type of addressing will be referred to in this course as implied addressing
or inherent addressing. The operations performed during an instruction
of this type are illustrated in Figure 2-24.

! FeTCH
| NEXT

\ s
\INSTRUCTION/
AN
~ — - d
I
t
|
i
]
|
|
t
I
|
|
1
1
|
1
I
|
!
|
|
|
|

_

/

FETCH PHASE EXECUTE PHASE

Figure 2-24
Operations Performed in the Inherent
or Implied Addressing Mode.

HEATHKIT

Microcomputer Basics

Immediate Addressing

In our previous program, the two-byte instructions use the immediate
addressing mode. In this mode, the operand is the byte immediately
following the opcode. That is, the byte of data that is to be operated upon
is the second byte of the instruction. When these two-byte instructions
are stored in memory, the address of the operand is the memory location
following the opcode. The operations performed during this type of
instruction are illustrated in Figure 2-25.

~
7 N
/ FETCH)
m PERFORM / NEEXCT \
PERATION
OPERATIO \ INSTRUCTION/I
\ 7
AN
- ~ g

DECODE OBTAIN
INSTRUCTION OPERAND

N e e e et e o — — — — ——————————

d = e e

-

FETCH PHASE EXECUTE PHASE

' Figure 2-25
Operations Performed in the Im-
mediate Addressing Mode.

2-45

2-46 [UNIT TWO

HEATHKIT
CONTINUING
EDUCATION

N\t

The inherent and immediate addressing modes have two advantages.
First, they require little memory space; one and two bytes respectively.
This is important because memory locations cost money. Generally, the
less memory space taken by a program, the better off we are. Second,
these addressing modes require a minimum of execution time. The
execution time can become important in long programs.

The time required for an instructior. to be fetched and executed is often
given in MPU cycles. We will define an MPU cycle as the minimum time
required to fetch a data byte from memory. Thus, the fetch phase of an
instruction requires one MPU cycle. In inherent and immediate addres-
sing modes, the execute phase also requires one MPU cycle. Therefore,
the minimum time required to fetch and execute any instruction is two
MPU cycles. As you will see later. other addressing modes will require
more MPU cycles.

Because of their fast execution time and their efficient use of memory, the
inherent and immediate modes of addressing should be used wherever
possible. However, there are many situations in which these addressing
modes are simply not suitable. For this reason, every microprocessor will
have instructions which use other addressing modes.

Direct Addressing

Most computer operations involve an operand. To realize its full poten-
tial, the computer must be able to manipulate the operand in many
different ways. Immediate addressing of an operand is most useful when
the operand is a constant that is used by only one instruction in the
program. In this case, the operand can be placed immediately after that
instruction’s opcode.

However, there are many cases in which the operand is a variable which
may be operated upon by many different instructions. In these cases, the
immediate addressing mode is simply not practical and a more sophisti-
cated form of addressing is necessary.

Microcomputer Basics

One way of solving this problem is to use the direct addressing meode. In
this mode, an instruction requires two bytes of memory. The first byte is
the opcode of the instruction just as before. However, the second byte is
not the operand. Instead, the second byte is the address of the operand.
The format of the instruction as it appears in memory is shown in Figure
2-26.

SECOND 3YTE D:E[[E:DADDREES OF CPERAND

Figure 2-26
Format of an Instruction which uses
the Direct Addressing Mode.

Three typical direct-addressing-mode instructions are listed in Figure
2-27. The first is the load accumulator instruction (LDA). Read the de-
scription carefully and note the difference between this instruction and
the LDA immediate instruction discussed earlier. An example of each
may help. In the immediate addressing mode, the instruction

LDA 50,

means ‘“‘load 50,, into the accumulator.” But in the direct addressing
mode, the same instruction means ‘‘load the number at memory location
50,, into the accumulator.”

NAME MNEMONIC OPCODE DESCRIPTION
Load Accumulator LDA 1001 0110, Load the contents of the memory
or location whose address is given by
96,6 the next byte into the accumuiator.
Add ADD 1001 1011, Add the contents of the memory location
or whose address is given by the next byte
9B, to the present contents of the accumuilator.
Place the sum in the accumuiator.
Store Accumulator STA 1001 0111, Store the contents of the accumulator in
or the memory location whose address is
97 4 given by the next byte.
Figure 2-27

Direct Addressing Mode Instructions.

2-47

2-48 [UN.TTWO

HEATHKIT
CONTINUING

e er e e Y

You may have noticed that this instruction has a different opcode from
the LDA immediate instruction. This is necessary to tell the MPU the
exact nature of the instruction. That is, the opcode tells the MPU the
addressing mode as well as the operation that is to be performed.

The ADD instruction also has a slightly different meaning in the direct
addressing mode. Recall that, in the immediate addressing mode,

means ‘“‘add 10,, to the contents of the accumulator.”” However, in the
direct addressing mode.

ADD 10,

means “add the contents of memory location 10,, to the contents of the
accumulator.” Once again, the opcode tells the MPU the addressing
mode. An opcode of 8B, means ADD immediate whereas an opcode of
9B s means ADD direct. .

The last instruction shown is a store accumulator (STA) instruction. It
tells the MPU to store the contents of the accumulator in the address
indicated by the second byte of the instruction.

For example:
STA 20,
means “‘store the contents of the accumulator in memory location 20,,.”

Because the second byte of the instruction must be an address, there is no
STA immediate instruction.

CONTINUING Microcomputer Basics 2' 49

The direct addressing mode instructions require one or more additional
MPU cycles to execute. A typical fetch-execute sequence is illustrated in
Figure 2-28. The instruction fetch is the same regardless of the addressing
mode. However, the execution phase is extended since the MPU must
first obtain the address of the operand from memory and then retrieve the
operand itself from memory.

ONE | ONE] ONE i
— MPUY o 2 P)~)\ P] reinf
CYCLE CYCLE CYCLE

|
|
|
|
1
!
I
|
|

/ \
/ FETCH \
NEXT i

\ INSTRUCTION /
/

DECODE
ADORESS

OBTAIN
OPERAND

|

|

{

1

|

|

|

! N
t ’
|

|

|

|

|

|

|

DECODE OBTAIN
INSTRUCTION ADDRESS

PERFOR™
OPERATION

PR VUGN S U U S

FETCH PHASE EXECUTE PHASE

Figure 2-28
Most Direct Addressing Mode Instruc-
tions Require Three MPU Cycles.

Direct addressing generally requires more memory and longer execution
times. However, there are many cases in which the added flexibility
makes direct addressing worthwhile in spite of these disadvantages.

HEATHKIT

2-50 | unir Two OaThING

Sample Program Using Direct Addressing

The differences between direct and immediate addressing can be illus-
trated by a sample program. Earlier we examined a program which added
two numbers (7 and 10). The sum was placed in the accumulator. Now
let’s look at the same program using direct addressing, only this time the
sum will be stored in memory.

Figure 2-29 shows the program as it would look when stored in memory.
Assume that we have arbitrarily stored the program starting at memory
location or address 0001 0000, (16,,). Addresses 16,,and 17,, contain the
first instruction:

LDA 23,
BINARY BINARY MNEMONICS/
ADDRESS CONTENTS CONTENTS
0001 0000 1001 0110 LDA | ‘
0001 0001 0001 0111 23, | StInstruction
0001 0010 1001 1011 ADD)
: 2nd Instruct
0001 0011 0001 1000 24,, } na Instruction
0001 0100 1001 0111 STA } i
!
0001 0101 0001 1001 25,, 3rd Instruction
0001 0110 6011 1110 HLT } 4th Instruction
0001 0111 0000 0111 7o
0001 1000 0000 1010 10,0 } ata
0001 1001 0000 0000 Reserved for sum

Figure 2-29
Sample Program Using Direct Addres-
sing.

HEATHKIT
CONTINUING
EDUCATION”

Microcomputer Basics

e

This instruction tells the MPU to load the contents of memory location
23,, into the accumulator. Looking down to address 23,, (0001 0111,),
you see that it contains the operand 7. Thus, the first instruction causes 7
to be loaded into the accumulator.

The second instruction is in memory locations 18,, and 19,,. It is:
ADD 24,

This tells the MPU to add the number at address 24,,to the number in the
accumulator. Address 24, (0001 1000,) contains the number 10,,. There-
fore, the second instruction causes 10,, to be added to the contents of the
accumulator. The sum (17,,) is placed back in the accumulator.

The third instruction, in locations 20,, and 21,,, is:

STA 254

This tells the MPU to store the contents of the accumulator in memory
location 25,,. After this instruction is executed, the number 17,, will
appear in location 25,,.

The final instruction tells the MPU to halt. The program illustrates the
value of the HLT instruction. Let’s assume that the HLT instruction is
inadvertently omitted. In this case, the MPU would fetch the next byte in
sequence and attempt to execute it as if it were an instruction. The next
byte is the number 7 ,,. This is a data word and was neverintended tobe an
instruction. Nevertheless, the MPU probably has an instruction with an
opcode of 7,,. After executing this instruction, the MPU will continue to
fetch and execute whatever it finds in the remaining memory locations.
Without a HLT instruction, it has no way of knowing where the instruc-
tions end and data begins.

2-51

2-52 | unir WO

HEATHKIT
CONTINUING
EDUCATION

Executing the Sample Program

The data flow within the microcomputer is slightly different for the direct
addressing mode. Figure 2-30 shows several of the data paths within the
microcomputer. Using this type of diagram, let’s examine the data ma-
nipulations that occur during the execution of our sample program.

Notice that our program is loaded in memory starting at address 16,,. The
program counter is set to 16,,, so the MPU is ready to begin executing the
program.

The first fetch phase is illustrated in Figure 2-30. During this phase:

1.

The contents of the program counter are loaded into the address
register.

The program counter is incremented to 17,,.

The contents of the address register are placed on the address
bus.

The contents of the selected memory location are transferred
via the data bus to the data register.

The contents of the data register are decoded.

The MPU recognizes that an LDA direct operation is indicated.
This concludes the fetch phase.

——
HEATHKIT _ '
CONTINUING Microcomputer Basics 2'53

I MICROPROCESSOR UNIT
ARITHMETIC [
LOGIC UNIT Ef

(MPU)
tALU)

FETCH EXECUTE
CONTROL CONTROL

CONTROLLER - [AND

«—— CONTROL
SEQUENCER
PROGRAM
COUNTER V@ 44

LINES

ACCUMULATOR

=\ E

i

INSTRUCTIONE:
DECODER |

ADDRESS ﬁ
REGISTER =

1folol1]of1{1]o})

DATA
REGISTER

00C!t 2000
088 9001 | 00
3001 o

Figure 2-30
Fetching the Opcode of the First In-
struction.

HEATHKIT
2-54 | unrTwo CONTINUING

The execute phase has two parts when direct addressing is indicated.
Figure 2-31 illustrates the first half of the execute phase. During this half:

1. The contents of the program counter are transferred to the ad-
dress register. This number is the memory location that holds
the address of the operand.

2. The program counter is incremented to 18,.

3. The contents of the address register are placed on the address
bus.

4. The contents of the selected memory location are placed on the
data bus. However, in the direct addressing mode, this data is
transferred to the address register. Thus, 23,, goes into the
address register, replacing the previous contents. After this cy-
cle, the address register will appear as shown in Figure 2-32.

Microcomputer Basics l 2'55 '

! MICROPROCESSOR UNIT

REGISTER

| T N L L L L L T T L L L L L L LT T T

ADDRESS

BUS

0001 0001

Figure 2-31

JATA
BUS

Fetching the Address of the First Operand

REGISTER

DATA

: 1
1 (MPU) 1
N o,]
: ARITHMETIC :
] LOGIC UNIT [:
: ALY 1
H 1
1
: FETCH EXECUTE
] CONTROL CONTROL 8
H -]
1 & ﬂﬂﬂ.ﬂ’aﬂ? !
! ACCUMULATOR T - ' clock
1 = AND
: \ CONTROLLER- | ARE 01
: - SEQUENCER i : LINES
PROGRAM 1
[, 1YY YY) H
: COUNTER /2 @ H
! 1
I '
! 1
i INSTRUCTION H
H DECODER H
: 1
! 1
JADDRESS 1
H 1
H 1
H 1
H 1
: 1
H 1
H !
H 1
H 1
4

HEATHKIT

) CONTINUI
2-56 | unir Two _i;!!’!'sgrl;"c ,

"

During the second half of the execute phase, the operand is loaded into
the accumulator as shown in Figure 2-32. The procedure is:

1. The address of the operand which is in the address register is
placed on the address bus.

2. The operand is read out of memory location 23,, and is transfer-
red via the data bus to the data register.

3. The operand is transferred from the data register to the ac-
cumulator.

This completes the execution of the first instruction. Notice that the first
operand (7,) is now in the accumulator.

Microcomputer Basics l 2‘57

REGISTER

: MICROPROCESSOR UNIT :
1 (MPU) 1
H ARITHMETIC H
1 LOGIC UNI 1
H (ALY !
1 1
1 4/~\n []
1 1
' 1
1 FETCH EXECUTE g
1 CONTROL CONTROL '
1

: :
i i
t s

g

: CONTROLLER - {37
1 SEQUENCER |
1 PROGRAM ' T "
1 COUNTER] 1
1 S A SO AR ST B :
i lofofofrfofoltlol) f] N @ | | £t cloln
1 * 1
! INSTRUCTION |
1 DECODER '
] 1
] 1
1 1
pADDRESS 1
:REGISTER !
1 s 1
1 1
1 1
1 1
1 1
1 1
' '

| TP cccsmcccecccccccne-

ADDRESS

BuS\‘

DATA
BUS

- ADORESS

0051 0000:} 15

Figure 2-32
Fetching the First Operand.

cLoCcK
AND

CONTROL
LINES

2-58

UNIT TWO

HEATHKIT
CONTINUING
EDUCATION.

The fetch phase for the second instruction is similar to that of the first. As
shown in Figure 2-33, it causes the opcode of the ADD instruction to be
read out of address 18,,. The opcode is transferred to the instruction
decoder via the data bus and data register. In the process, the program
counter is incremented to 19,,.

! MICROPROCESSOR UNIT

PROGRA
COUNTE

ADDRESS

becaae:

ADDRESS

BUS Ny

(MPU)

TALU}

Lol i

accunuearor fofofofo[o] 1]1]

)
R

REGISTER

ARITHMETIC
LOGIC UNIT

4081 0001 | 00t

0001 0010

FETCH
CONTROL

EXECUTE
CONTROL

CONTROLLER
SEQUENCER [2

7 . W—
[~ M

[YY

y

GBS R SR AT

Tolol 1 o[\ [1])

Figure 2-33
Fetching the Opcode of the Second In-
struction.

DATA
REGISTER

CONTROL
LINES

CONTINUING Microcomputer Basics 2'59

The first half of the execute phase is illustrated in Figure 2-34. Here, the
address of the second operand is read out of memory location 19,, and is
placed in the address register.

P D D D D D D D P D D D D D D D A D D e D D D G e G G S DD D D DGR G DG GG G e e .
: : MICROPROCESSOR UNIT
(MPU)

ARITHMETIC
LOGIC UNIT E
tALU) 5

FETCH EXECUTE
CONTROL CONTROL

-
> CLOCK
g AND
CONTROLLER - JZo7 ANL o1

SEQUENCER :“'?“ LINES
PROGRAM l i
COUNTER ['
]
o !
INSTRUCTION :

DECODER : o

'
]
ADDRESS '
REGISTER !
gt DATA 1
REGISTER :
1
I
1
1

beccea. P L L L T T T TP PR |

ADORESS

BUS G

DATA
BUS

9 MN&'MQNI CSI
CBECEMAL:

S CONTENTS LA t

Anoﬂass‘.'

ooty odon |
0001 eurc-izaux Yo
\\\::::> 0001 0011 {9001 1040

‘9001 0fas | 1901 11
g0ot 4101} 000F ;m.;
R
400y Girt]onsg prit)
0BOL 100G | D
oegt tam

Figure 2-34
Fetching the Address of the Second Operand.

2-60 l UNIT TWO

HEATHKIT
CONTINUING

2

t”

Figure 2-35 illustrates the second cycle of the execute phase. Here the
address of the second operand is transferred from the address register to
the address bus. The address is 24,,. Therefore, the contents of location
24,,are placed on the data bus and transferred to the data register. That is,
the second operand 10,, is loaded into the data register. Then, the
operand from the data register is made available at one input to the ALU.
Simultaneously, the first operand which has been waiting in the ac-
cumulator is made available at the other input to the ALU. The ALU adds
the two operands together, producing a result of 17, This sum is put
back in the accumulator, replacing the previous number.

HEATHKIT Microcomputer Basics l 2-61

REGISTER
g DATA
REGISTER

1
| mICROPROCESSOR UNIT H
1 (MPU) '
1
1
1 ARITHME : H
1 - <
1 LOGIC UNIT 3A :
: ALY) H
1
1
1
! 4 ;
: (38) FETCH EXECUTE
1 CONTROL CONTROL :
! .
1 39 ﬂ”ﬁ'ﬁaﬁ? :
! accumutator Jolofofofo]1]1]1] =l] | clock
1 d—— AND
: CONTROLLER- 7o ANE o1
: I\ SEQUENCER F™—— | |Nngs
: PROGRAM - i
1 COUNTER i
1 (TR axmss H
i ofofo] 1 [o] t[olo; e B
: INSTRUCTION :
: DECODER :
! i
' '
1 ADDRESS !
' :
: 1
1
! :
1
1]
1]
' :
]

bacaaa:

ADDRESS

BUS N

DATA
8US

“MEMORY |/

rooness | By PRS- t
o |CONTENTS ronrry
0081 0000 | 10
0001 0801 |
0901°0010 | 105
‘ 6901 0011 | t

-0

Q 0091 1000 | 3000 1010 10 -)p)

Figure 2-35
Adding the Two Operands.

HEATHKIT
2-62 | uniT TWo

Now all that remains is to place the sum in memory. This is done by the
STA 25,, instruction. Since this is the next instruction in sequence, it will
be fetched and executed next. The fetch phase is illustrated in Figure
2-36. It ends with the STA opcode being decoded.

O D - - e S e - - - - S D G5 D G R D S D S D S e e e e .

REGISTER

! MICROPROCESSOR UNIT !
' (MPU) i
H SIS 1
! ARITHMETIC !
' LOGIC UNIT I
: (ALY :
1]
h (\f H
1]
H]
' FETCH EXECUTE ¢
H CONTROL CONTROL 8
1 L]
H PP :
E accumutator }0[0]0] o(15) | | izl | clocx
e AND
i ~ 4 CONTROLLER- o N0)
; N . SEQUENCER | 2= LINES
i
1 COUNTER @ W 4 H
| Lz !
! I
! '
' INSTRUCTION :
. 1 DECODER !
: 1
! i
1
JADDRESS . 1
i i
! T !
1]
1 1
1 1
1 1
1 1
1 1

hbacsecoe, ccsssssccssssascas P T L T LT P TP PP |

|
e
|

BATA

"’95

 SINARY

A GORESS ARY L hEeiM
contenTs|

gLt
: toot B f o
100010813 { o003 1oon] 24
0001 0100 | 1901 0111

Figure 2-36
Fetching the Third Opcode.

"B o | 2-63

Microcomputer Basics

The first half of the execution phase of the STA instruction involves
loading the address of the storage location into the address register.
Figure 2-37 illustrates that this four-step procedure is identical to that
performed for the previous two instructions. It ends with the address 25,,
in the address register.

! MICROPROCESSOR UNIT

] 1
H (MPU) i
H —
: AR | THME :
1 LOGIC UNI]
[ALY |
]
1]
1]
' :
: FETCH EXECUTE g
1 CONTROL CONTROL :
|
! ACCUMULATOR Eﬂﬂnﬂmﬂn ““—v L clock
] ‘—E— AND
: CONTROLLER- {277 A58 o)
: | \ SEQUENCER “'—— LINES
PROGRAM i
[
: COUNTER @ ! i :
Y '
!)
: SRS EB DA g '
] INSTRUCTION |
: DECODER :
= :
bapoRress i
TREGISTER !
1 EJEJEIIEIIEII REGISTER :
i] !
))
1)
1 t !
beccce:| | cosccscccccccccncs I iccccrerrnrcccccccncncacaead
ADDRESS
BUS Y|
t DATA
 MEMORY e
mmsmmc{
ipoRESS C“o”““&' . DECISAL
[TONTERTSE. cantEnts
1 0000 {1001 01101 LO&
001 | 000 G111} 23
agr0 1001 1011} a0B
0011 [00011006 24
S 0100 100k Ot1] sta
01010001 1001 25
10.{ 008 FRIEE BT
chiiy e
019008 1010 e

Figure 2-37
Fetching the Third Address.

2-64

UNIT TWO

HEATHKIT
CONTINUING
_EDUCATION

s

During the final half of the execute phase, the contents of the accumulator
are transferred to the data register and are then stored in the selected
memory location. We have not yet discussed this operation in detail.
Therefore, the step-by-step procedure is presented below. Refer to Figure
2-38 for the following steps:

1. The contents of the accumulator (17,,) are transferred to the data
register. At this point, the number 17,, exists in both the ac-
cumulator and the data register.

2. The address at which this data is to be stored is placed on the
address bus.

3. The contents of the data register are placed on the data bus.

4. The number on the data bus is written into the selected memory
location. That is, 17,, is written into memory location 25,.

Notice that, after this operation, the number 17,, appears at memory
location 25,,, but it also appears in the accumulator. Thus, the number is
merely “copied” into memory. It is also important to note that the previ-
ous contents of memory location 25,, are lost whenever you write new
data into thislocation. For this reason, you must be certain that you do not
write into a location that contains an instruction or some byte of data that
you will need later.

The program has now accomplished its goal. It has added 10 to 7 and has
stored the sum back in memory. The last step in the program is the HLT
instruction. The MPU fetches and executes this instruction next. The
fetch and execute sequence for this instruction were discussed earlier
and need not be repeated here.

Microcomputer Basics l 2-65

DATA
REGISTER

! MICROPROCESSOR UNIT H

1 (MPU) 1

1 ¢ 1

1]

! ARITHMETIC !

1 LOGIC UNIT !

1 i

b (ALU 3P :

I

I /\. 1

H 1

H 1

1 FETCH EXECUTE g

1 CONTROL CONTROL

' L 1

1 & ﬂwﬂ.ﬂws :

! ACCUMULATOR [1]o]ojol1] 1 0 clock

! e AND

i CONTROLLER - T CONTROL

i SEQUENCER }——= | |NES
™ M

: PROGRAM : v i

1 COUNTER 1

! 1

H !

g WOOONoHYOE b "\ | | izisinsisie 1

! 1

! INSTRUCTION H

1 DECODER :

! 1

1 1

2 ADDRESS 1

IREGISTER H

[N ETTT H

1]

1]

1 []

1]

1]

1]

1 []

-

—-———— e sssrcee e oo - B L L L T T T T PP |

DATA
3US

A NEMONICS ‘
QECIMAL. |
CONTENTS

“MEM
BT NARY
CONTENTS

T

0001 0006 {1061 0139 |
0001-000% 0001 0111 |
‘ 400t 9016 {HOEY 1031 |
G001 BOTT | DOOT 1000 [
4001 o100 18T 0111
©) 000161011 0001 1001
0001 0118 } 0011 1110
2901 0111 § 0080011}

0001 1000} 0000 1610 |
k 2001 100110001 0001

g

ADDRESS

Figure 2-38
Storing the Sum.

2-66

UNIT TWO

Combining Addressing Modes

When writing programs, you can use the addressing mode that best suits
your application. For example, the program that was just discussed can
be shortened by using the immediate addressing mode with the first two
instructions. Figure 2-39 compares two programs that do the same job.

Using direct addressing only, the program required ten bytes of memory.
It’s execution requires eleven MPU cycles. If you use immediate addres-
sing for the first two instructions, the program requires eight bytes of
memory. Furthermore, it can be executed in nine MPU cycles. Everything
else being equal, the second approach would probably be preferred.

CONTINUING i i -
EDUCATION Microcomputer Basics 2 67
— Ee—————)
A. USING DIRECT ADDRESSING
HEX HEX MNEMONICS/

B ADDRESS | CONTENTS CONTENTS COMMENTS

00 9% Load accumulator direct with operand 1
- o 07 which is stored at this address.

02 98 Add to accumulator direct with operand 2

03 08 which is stored at this address.

04 97 Store the sum
- 05 09 at this address.

06 3E Stop

07 21- Operand 1

08 17 Operand 2
- 09 - Reserved for sum.
— B. COMBINING ADDRESSING MODES

HEX HEX MNEMONICS/
ADDRESS | CONTENTS CONTENTS COMMENTS

B 00 86 Load accumulator immediately with

01 21 Operand 1.

02 12) Add to accumulator immediately with
— 03 17 Operand 2.

04 97 Store the sum

05 07 at this address.

06 3E Stop
- 07 —_ Reserved for sum.

Figure 2-39

By Combining the Addressing Modes,
We Can Save Memory Space And
Computer Time.

2-68

UNIT TWO

HEATHKIT
CONTINUING

I o S)

"

Self-Test Review

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

What addressing mode is used by single byte instructions?

In the immediate addressing mode, what is the second byte of the
instruction?

In the direct addressing mode, what is the second byte of the
instruction?

In all addressing modes, what is the first byte of the instruction?
Define MPU cycle.

Which of the three addressing modes discussed so far requires the
longest execution time?

Refer to Figure 2-39A. What number is loaded into the accumulator
by the first instruction?

What number is added to the accumulator by the second instruc-
tion?

When the computer halts, what number will be in memory location
097 '

Refer to Figure 2-39B. When the computer halts, what number will
be in memory location 077

Answers

41. Inherent or implied.

42. The operand.

43. The address of the operand.
44. The opcode.

45.

46. The direct addressing mode.
47. 21,5 or 33y,.

48. 17,5 or 234,.

49, 38, or 56,,.

50. 38,5 or 56,

HEATHKIT

Microcomputer Basics 2- 69

An MPU cycle is the time required to fetch a byte from memory.

OR X B

Nxp T ™=

N

2-70

UNIT TWO

EXPERIMENT 3

Perform Experiment 3 in Unit 9 of this course. After you finish the
experiment, return to this unit and complete the final examination.

Microcomputer Basics

UNIT EXAMINATION

1. In microprocessor terminology, the number or piece of data that is
operated upon is called the:

A. Operand.
B. Opcode.
C. Address.
D. Instruction.
2. The part of the instruction that tells the microprocessor what opera-

tion to perform is called the:

A. Operand.
B. Opcode.
C. Address.
D. Mnemonic.
3. The portion of the microcomputer in which instructions and data

are stored is called the:

A. ALU.

B. MPU.

C. RAM.

D. Data bus.

4, An 8-bit byte in memory can represent an:

A. Opcode.

B. Operand.

C. Address.

D. All of the above.

5. During the fetch phase:

A.
B

The opcode is fetched from memory and is decoded.

The address of the operand is fetched from memory and is
decoded.

The operand is fetched from memory and is operated upon.
The program count is fetched from memory.

2-71

2-72 | uniT TWO

HEATHKIT

10.

In what register is the result of an arithmetic operation normally

placed?

A. The data register.

B. The address register.

C. The arithmetic logic unit (ALU).
D. The accumulator.

During the fetch and execute phases of the ‘“load accumulator
direct” instruction, the information on the data bus will be:

A.
B.

C.

D.

The operand address followed by the operand.

The program count, followed by the opcode, followed by the
operand address, followed by the operand.

The opcode, followed by the operand address, followed by the
operand.

The opcode, followed by the operand.

In the immediate addressing mode, the second byte of the instruc-

tion is the:

A. Opcode of the instruction.

B. Number that is to be operated upon.
C. Address of the operand.

D. Address of the opcode.

In the direct addressing mode, the second byte of the instruction is

the:

COow»

Opcode of the instruction.

Number that is to be operated upon.
Address of the operand.

Address of the opcode.

Which of the following is normally a one-byte instruction?

oW

Halt.

Add immediate.

Load accumulator direct.
Store accumulator direct.

11.

12.

13.

Microcomputer Basics

At the start of the fetch phase, the program counter contains:

The address of the operand to be fetched.
The address of the opcode to be fetched.
The opcode of the instruction.

The operand.

Sow

Which register holds the opcode while it is being decoded?

A. The address register.
B. The accumulator.
C. The data register.
D. The program counter.

The program shown in Figure 2-40:

HEX HEX MNEMONICS/
ADDRESS | CONTENTS | CONTENTS

00 86 LDA
01 00 00,6
02 97 STA
03 09 09,6
04 97 STA
05 0A 0A;
06 97 STA
07 08 0By
08 3E HLT
09 _ -

0A - -

oB - -

Figure 2-40

Program for Question 13.

Adds the contents of memory location 09, 0A, and 0B.
Stores 00 in locations 09, 0OA, 0B.

Stores 09 in location 03, 0A in location 05, and 0B in location
07.

D. Stores 0B in the accumulator.

0wy

2-73

2-74

UNIT TWO

HEATHKIT
CONTINUING
_EDUCATION

14.

et e

The program shown in Figure 2-41:

oowp

HEX HEX MNEMONICS/
ADDRESS |CONTENTS | cONTENTS
00 96 LDA
01 09 09,
02 9B ADD
03 09 09«
04 9B ADD
05 09 09,
06 98 ADD
07 09 09..
06 3E HLT
09 04 04,
Figure 2-41

Program for Question 14.

Multiplies 4 times 4 and holds the product in the accumulator.
Multiplies 9times 3 and holds the product in the accumulator.
Multiplies 4 times 3 and stores the product in the accumulator.
Multiplies 9 times 4 and holds the product in the accumulator.

15.

The program shown in Figure 2-42:

oowp

Microcomputer Basics 2'75

Swaps the contents of memory location 0D and OE.

Stores AA ¢ in locations 0D, OE, and OF.
Stores BB, in locations 0D, OE, and OF.

Adds AA and BB, storing the sum at location OF.

HEX HEX MNEMONICS/
ADDRESS | CONTENTS | CONTENTS
00 96 LDA
01 oD 0Dys
02 97 STA
03 OF OF
04 96 LDA
05 0E 0E;s
06 97 STA
07 0D 0Dy
08 96 LDA
09 OF OF s
0A 97 STA
08 OE 0B
ocC 3E HLT
oD AA AA,
OE 8B BBs
OF - -
Figure 2-42

Program for Question 15.

2-76

UNIT TWO

