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COMPUTER ARITHMETIC

INTRODUCTION

In this Unit you will complete your study of the binary number system.
Since microprocessors use binary numbers for data and control, it is
important that you become familiar with them.

Computer arithmetic involves many forms of number manipulation. In
the pages that follow you will be given the fundamentals of binary
mathematics: addition, subtraction, multiplication, and division. Then
you will learn to perform two’s complement arithmetic using binary
numbers. Finally, you will be shown how the microprocessor performs
the four basic Boolean logic operations. These logical operations include
AND, OR, exclusive OR, and invert.
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UNIT OBJECTIVES

When you complete this Unit you will be able to:

1.

10.

11.

Add two binary numbers.

Subtract one binary number from another.

Multiply one binary number by another.

Divide one binary number by another.

Derive the one’s complement of a binary number.

Derive the two’s complement of a binary number.

Add binary numbers using two’s complement arithmetic.
Manipulate binary numbers using the AND operation.
Manipulate binary numbers using the OR operation.
Manipulate binary numbers using the exclusive OR operation.

Logically invert binary numbers.
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UNIT ACTIVITY GUIDE

Completion
Time

Read section on Binary Arithmetic.

Answer Self-Test Review Questions 1-11.

Read section on Two's Complement Arithmetic.
Answer Self-Test Review Questions 12-21. -
Read section on Boolean Operations.

Answer Self-Test Review Questions 22-30.
Perform Experiment 4.

Complete Unit Examination.

O o o o o o o 0O o

Review Examination Answers.
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UNIT THREE

BINARY ARITHMETIC

A number system can be used to perform two basic operations: addition
and subtraction. But by using addition and subtraction, you can then
perform multiplication, division, and any other numerical operation. In
this section, binary arithmetic (addition, subtraction, multiplication, and
division) will be examined, using decimal arithmetic as a guide.

Binary Addition

Binary addition is performed somewhat like decimal addition. If two
decimal numbers, 56719 and 31863, are added together, the sum 88582 is
obtained. You could analyze the details of this operation in the following
manner.

NOTE: In the following explanations, the term
“first column” refers to the first column of figures
you work with in the problem — the column on the
right (9, 3, and 2 in the following example). The
term “second column” refers to the second column
you work with, etc.

Carry: 00101

Addend: 56719
Augend: + 31863
Sum: 88582

Adding the first column, decimal numbers 9 and 3, gives the sum of 12,
This is expressed in the sum as the digit 2 with a carry of 1. The carry is
then added to the next column. Adding the second column decimal
numbers 1 and 6, and the carry from the first column, gives the sum of 8,
with no carry. This process continues until all of the columns (including
carries) have been added. The sum represents the numeric value of the
addend and augend. (The addend is the number to be added to another
number, while the augend is the number to which the addend is added.)



HEATHKIT
CONTINUING
EDUCATION

Computer Arithmetic

_—

When you add two binary numbers, you perform the same operation.
Figure 3-1 summarizes the four rules of addition with binary numbers.

1. 0+0 =0
2. 0+1 =1

3. 1+1

0 with a carry of 1.
4, 1+1+1=1 with a carry of 1.

Figure 3-1
Rules for binary addition.

To illustrate the process of binary addition, let’s add 1101 to 1101.

Carry: 1101

Addend: 1101
Augend: + 1101
Sum: 11010

In the first column, 1 plus 1 equals 0 with a carry of 1 to the second
column. This agrees with rule 3. In the second column, 0 plus 0 equals 0
with no carry. To this sum, the carry from the first column isadded. Thus,
0 plus 1 equals 1 withno carry. These two additions in the second column
give atotal sum of 1 with a carry of 0. Rules 1 and 2 were used to obtain the
sum.

In column three, 1 plus 1 equals 0 with a carry of 1. To this sum, the
second column carry is added. This yields a third column sum of 0 with a
carry of 1 to column four. Rules 3 and 1 were used to obtain the sum.

In column four, 1 plus 1 equals 0 with a carry of 1. To this sum, the third
column carry is added. This yields a fourth column sum of 1 with a carry
to the fifth column. Rule 4 allows you to add three binary 1’s and obtain 1
with a carry of 1.

In column five, there is no addend or augend. Therefore, you can assume
rule 2 and add the carry to 0 to obtain the sum of 1. Thus, the sum of 1101,
plus 1101, equals 11010,. You can verify this by converting the binary
numbers to decimal numbers.

3-7
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Now study the following two examples of binary addition, where
10001111, is added to 10110101, and 111011, is added to 11001100,.

Carry: 10111111

Addend: 10110101
Augend: + 10001111
Sum: 101000100
Carry: 11111000

Addend: 11001100
Augend: + 00111011
Sum: 100000111

When binary addition is performed with a microprocessor, 8-bit numbers
are generally used. As shown in the last example, two zeros were added
after the MSB of the augend to produce an 8-bit number. After addition, a
1 in the ninth bit is represented as the “carry’’ bit by the microprocessor.
This will be explained in a later unit.

Binary Subtraction

Binary subtraction is performed exactly like decimal subtraction. There-
fore, before binary subtraction can be attempted, decimal subtraction
should be reexamined. You know that if decimal 5486 is subtracted from
8303, the difference 2817 is obtained.

Minuend after borrow: 712913
Minuend: 8 30 3
Subtrahend: -5 48 6
Difference: 2 81 7

Because the digit 6 in the subtrahend is larger than the digit 3 in the
minuend, a 1 is borrowed from the next higher-order digit in the
minuend. If that digit is 0, as in this example, 1 is borrowed from the next
higher-order digit that contains a number other than 0. That digit is
reduced by 1 (from 3 to 2 in this example) and the digits skipped in the
minuend are given the value 9. This is equivalent to removing 1 from 30
with the result of 29, as in this example. In the decimal system, the digit
borrowed has the value of ten. Therefore, the minuend digit now has the
value 13, and 6 from 13 equals 7.




Computer Arithmetic

In the second column, 8 from 9 equals 1. Since the subtrahend is larger
than the minuend in the third column, 1 is borrowed from the next
higher-order digit. This raises the minuend value from 2 to 12, and 4 from
12 equals 8. In the fourth column, the minuend was reduced from 8 to 7
because of the previous borrow, and 5 from 7 equals 2.

Whenever 1 is borrowed from a higher-order digit, the borrow is equal in
value totheradix or base of the number system. Therefore, aborrow in the
decimal number system equals ten, while a borrow in the binary number
system equals two.

When you subtract one binary number from another, you use the same

method described for decimal subtraction. Figure 3-2 summarizes the
four rules for binary subtraction.

4. 0-1=1 with a borrow of 1.

Figure 3-2
Rules for binary subtraction.

To illustrate the process of binary subtraction, let’s subtract 1101 from
11011.

Minuend after borrow: 0101011
Minuend: 11011
Subtrahend: - 1 101
Difference: 1 110

The “minuend after borrow’’ now shows the value of each minuend digit
after a borrow occurs. Remember that binary 10 equals decimal 2.

Inthe first column, 1 from 1 equals 0 (rule 2). Then, 0 from 1 in the second
column equals 1 (rule 3). In the third column, 1 from 0 requires a borrow
from the fourth column. Thus, 1 from 10, equals 1 (rule 4). The minuend
in the fourth column is now 0, from the previous borrow. Therefore, a
borrow is required from the fifth column, so that 1 from 10, in the fourth
column equals 1 (rule 4). Because of the previous borrow, the minuend in

3-9
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the fifth column is now 0 and the subtrahend is 0 (nonexistant), so that 0
from 0 equals 0 (rule 1). The 0 in the fifth column is not shown in the
difference because it is not a significant bit. Thus, the difference between
11011, and 1101, is 1110,. You can verify this by converting the binary
numbers to decimal numbers.

As a further example of binary subtraction, subtract 00100101, from
11000100,, as shown below. Then proceed to the next example and
subtract 10111010, from 11101110,.

Minuend after borrow: 1011110110
Minuend: 11000 10 O
Subtrahend: -00100 10 1
Difference: 10011 11 1
Minuend after borrow: 0010101110
Minuend: 11 1 01110
Subtrahend: -10 1 11010
Difference: 00 1 10100

When a borrow is required in the minuend, 1 is obtained from the next
high-order bit that contains a 1. That bit then becomes 0, and all bits
skipped (0 value bits) are given the value 1. This is equivalent to remov-
ing 1 from 1000, with the result of 0111,.

As with binary addition, microprocessors generally perform subtraction
on 8-bit number groups. In the previous example, the answer contained
only six significant bits, but two 0 bits were added to maintain the 8-bit
grouping. This would also be true for the minuend and subtrahend.

Subtraction of a large number from a smaller number will be described in
a later section of this Unit.
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Binary Multiplication

Multiplication is a short method of adding a number to itself as many
- times as it is specified by the multiplier. However, if you were to multiply
324,, by 223,,, you would probably use the following method.

— Multiplicand: 324
Multiplier: X 223
First partial product: 972

- Second partial product: 648
Third partial product: 648
Carry: 0121

- Final product: 72252

Using this short form of multiplication, you multiply the multiplicand by
= each digit of the multiplier and then sum the partial products to obtain

the final product. Note that, for convenience, the additive carries are

set-down under the partial products rather than over them as in normal
—  addition.

Binary multiplication follows the same general principles as decimal

- multiplication. However, with only two possible multiplier bits (1 or 0),
binary multiplication is a much simpler process. Figure 3-3 lists the rules
of binary multiplication. These rules are used to multiply 1111, by 1101,
on the next page.

_ 1. 0X0=0
2. 0x1=0

- 3. 1Xx0=0
B 4, 1x1=1
i“igure3-3

Rules for binary multiplication.
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Multiplicand: 1111
Multiplier: x1101
First partial product: 1111
Second partial product: 0000
Carry: 0000
Sum of partial products: 1111
Third partial product: 1111
Carry: 111100
Sum of partial products: 1001011
Fourth partial product: 1111
Carry: 1111000
Final product: 11000011

As with decimal multiplication, you multiply the multiplicand by each
bit in the multiplier and add the partial sums. First you multiply 1111, by
the least significant multiplier bit (1) and set down the partial product so
the least significant bit (LSB) is under the multiplier bit. Then you
multiply the multiplicand by the next multiplier bit (0) and set down the
partial product so the LSB is ungder the multiplier bit. Now that there are
two partial products, they should be added. Although it is possible to add
more than two binary numbers, keeping track of the multiple carries may
become confusing. Therefore, for these examples, add only two partial
products at a time.

Notice that the first partial product is identical to the multiplicand. The
second partial product is all zeros. Since the binary number system
contains only ones and zeros, the partial product will always equal either
the multiplicand or zero. Because of this, you can obtain the third partial
product by copying the multiplicand. Begin with the LSB under the third
multiplier bit. Add this value to the previous partial sum. Now obtain the
fourth partial product by copying the multiplicand. Begin with the LSB
under the fourth multiplier bit. Add this value to the previous partial
sum. This is the final product. You can verify the result by converting the
binary numbers to decimal.

Reexamine the illustration for the previous multiplication example.
Notice that binary multiplication is a process of shift and add. For each 1
bit in the multiplier you copy down the multiplicand, beginning with the
LSB under the bit. You can ignore any zeros in the multiplier. But do not
make the mistake of setting down the multiplicand under the 0 bit.
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To make sure you fully understand binary multiplication, multiply 1001,
by 1100, and then multiply 1101, by 1111,.

Multiplicand: 1001
Multiplier: %1100
First partial product: 0000
Second partial product: 0000
Carry: 0000
Sum of partial products: 00000
Third partial product: 1001
Carry: 00000
Sum of partial products: 100100
Fourth partial product: 1001
Carry: 000000
Final product: 1101100
Multiplicand: 1101
Multiplier: xX1111
First partial product: 1101
Second partial product: 1101
Carry: 11000
Sum of partial products: 100111
Third partial product: 1101
Carry: 100100
Sum of partial products: 1011011
Fourth partial product: 1101
Carry: 1111000
Final product: 11000011

In the first of these last two examples, the two zeros in the multiplier were
included in the multiplication process. This was to insure that the mul-
tiplicand was copied down under the proper multiplier bits. The mul-
tiplication process could have been represented in this manner:

Multiplicand: 1001
Multiplier: xX1100
Third partial product: ' 100100
Fourth partial product: 1001
Carry: 000000
Final product: 1101100

Remember, just as in decimal multiplication, you must keep track of any
zeros by setting a zero in the product under the 0 bit in the multiplier.
This is very important when the zero occupies the LSB.
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Division is the reverse of multiplication. Therefore, it is a procedure for
determining how many times one number can be subtracted from
another. The process vou are probably familiar with is called ““long”
division. If you were to divide decimal 181 by 45, you would obtain the
quotient, 4-1/45, as follows: '

004 Quotient
Divisor 45 ) 181 Dividend
180
1 Remainder

Using long division, you would examine the most significant digit in the
dividend and determine if the divisor was smaller in value. In this
example the divisor is larger, so the quotient is zero. Next, you examine
the two most significant digits. Again the divisor is larger, so the quotient
is again zero. Finally, you examine the whole dividend and discover it is
approximately four times the divisor in value. Therefore, you give the
quotient a value of 4. Next, you subtract the product of 45 and 4 (180) from
the dividend. The difference of one represents a fraction of the divisor.
This fraction is added to the quotient to produce the correct answer of
4-1/45.

Binary division is performed in a similar manner. However, binary divi-
sion is a simpler process since the number base is two rather than ten.

First, let’s divide 100011, by 101,.

000111 Quotient

Divisor: 101 ) 100011 Dividend
101
11 Remainder
101
101 Remainder
101
T 0 Remainder

Using long division, you examine the dividend beginning with the MSB
and determine the number of bits required to exceed the value of the
divisor. When you find this value, place a one in the quotient and subtract
the divisor from the selected dividend value. Then carry the next least
significant bit in the dividend down to the remainder. If you can subtract
the divisor from the new remainder, place a one in the quotient. Then
subtract the divisor from the remainder and carry the next least signifi-
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cant bit in the dividend (LSB in this example) down to the remainder. If
the divisor can be subtracted from the new remainder, place a one in the
quotient and subtract the divisor from the remainder. Continue the pro-
cess until all of the dividend bits have been carried down. Then express
any remainder as a fraction of the divisor in the quotient. Thus, 100011,
divided by 101, equals 111,. You can verify the answer by converting the
binary numbers to decimal.

To make sure you fully understand binary division, work out the follow-
ing examples of long division. Divide 101000, by 1000, and then divide
100111, by 110,.

000101 Quotient
Divisor 1000 ) 101000 Dividend
1000}}
1000 Remainder
1000
0 Remainder

000110.1 Quotient
110 ;100111.0 Dividend
_110}
111 Remainder
110
110 Remainder
10
0 Remainder

Divisor:

In the second example, the quotient was not a whole number, but rather a
whole number plus a fraction (remainder divided by the divisor). The
answer 110-11/110 is correct. You could have left the answer in this form
or, as in the example, continue the division process until the remainder
was zero. This is made possible by adding a sufficient number of zeros
after the binary point to permit division by the divisor. In the previous
example, only one zero was added after the binary point. As you learned
in Unit 1, adding zeros after the binary point will not affect the value of
the number. Note that some numbers cannot be solved in this manner
(e.g., decimal 1/3).

3-15
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Representing Negative Numbers

Until now, we have been examining binary arithmetic using unsigned
numbers. However, when you perform some arithmetic operations with a
microprocessor, you must be able to express both positive and negative
(signed) numbers. Over the years three methods have been developed for
representing signed numbers. Of these, only one method has survived.
The two older methods will be examined first, and then the system that is
used today.

SIGN AND MAGNITUDE. Using this system, a binary number contained
both the sign (+ or —) and the value of the number. Therefore, positive
and negative values were expressed as follows:

+45, = 00101101,
SIGN MAGNITUDE
—45,, = 10101101,

The MSB of the binary number indicated the sign, while the remaining
bits contained the value of the number. As you can see, a zero sign bit
indicated a positive value, while a one sign bit indicated a negative value.

While this method of representing negative numbers may seem logical,
its popularity was short-lived. Because it required complex and slow
arithmetic circuitry, it was abandoned long before microprocessors were
invented.
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ONE’S COMPLEMENT. Another method of representing negative num-
bers became popular in the early days of computers. It was called the
one’s complement method. Using this system, positive numbers were
represented in the same way as in the sign-magnitude system. That is, the
MSB in any number was considered to be a sign bit. A sign bit of 0
represented positive. Using 8-bit numbers, positive values were rep-
resented like this: '

+ 4, = 00000100
+ 174 = 00010001
+127, = 01111111
Sign bit Binary value

Negative numbers were represented by the one’s complement of the
positive value. The one’s complement of a number is formed by changing
all 0’s to 1’s and all 1’s to 0’s. As shown above, +4,, is represented as
00000100,. By changing all 0’s to 1’s and all 1’s to 0’s, the representation
for —4,, was formed. In this-case:

- 4 = 11101

Notice that all the hits, including the sign bit, were inverted. In the same
way:

— 17y = 1 1101110,

_12710

i

1 0000000,

The one’s complement method is not used for representing signed num-
bers in microprocessors. However, as you will see later, you may still be
called uponto find the one’s complement of a number. Remember, you do
this by simply changing all 0’s to 1’s and all 1’s to 0’s.

3-17
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Figure 3-4 shows an interesting relationship. In the first column, 8-bit
patterns of 0’s and 1’s are shown. The second column shows the decimal
number that each pattern represents if you consider the pattern to be an
unsigned binary number. Notice that an 8-bit pattern can represent un-
signed numbers between 0 and 255,,.

The third column shows the decimal number that each pattern represents
if you consider the pattern to be a one’s complement binary number.
Notice that the range of numbers is from —127,, to +127,,. Notice also
that there are two representations of zero. The pattern 0000 0000, repre-
sents +0 while its one’s complement (1111 1111,) represents —0.

TWO*‘S COMPLEMENT. The method used to represent signed numbers
in microprocessors is called two’s complement. In this system, positive
numbers are represented just as they were with the sign-and-magnitude
method and the one’s complement method. That is, it uses the same bit
pattern for all positive values up to +127,,. However, negative numbers
are represented as the two’s complement of positive numbers.

The two’s complement of a number is formed by taking the one’s com-
plement and then adding 1. For example if you work with 8-bit numbers
and use the two’s complement system, +4,, is represented by 00000100,.
Tofind ~4,,, you must take the two’s complement of this number. You do
this by first taking the one’s complement, which is 11111011,. Next, add
1 to form the two's complement:

11111011,
+ 1
11111100,

Thus, the two’s complement representation of —4,, is 11111100,.

To be sure you have the idea, look at a second example: how do you
express —17,,as an 8-bit two’s complement number? Start with the two’s
complement representation of +17,,, which is 00010001,. Take the one’s
complement by changing all 0’s to 1’s and 1’s to 0’s. Thus, the one’s
complement of +17,,is 11101110,. Next, find the two’s complement by
adding 1:

11101110,
+ 1

11101111,
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BIT UNSIGNED 1’s
PATTERN BINARY COMPLEMENT
00000000 0 +0
00000001 1. +1
00000010 2 +2
00000011 3 +3
01111100 124 +124
01111101 125 +125
01111110 126 +126
01111111 127 +127
10000000 128 =127
10000001 129 —-126
10000010 130 -125
10000011 131 —-124
11111100 252 -3
11111101 253 -2
11111110 254 -1
11111111 255 -0
Figure 3-4

Table of bit pattern values for un-

signed binary numbers and 1's com-

plement numbers.
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Figure 3-5 compares unsigned, two’s complement, and one’s comple-
ment numbers. Several 8-bit patterns are shown on the left. The other
three columns show the decimal number represented by these patterns.

Notice that the range of 8-bit two’s complement numbers is from —128,,
to +127,,. Notice also that there is only one representation for 0.

If this table included all 256,, possible 8-bit patterns, you could look up
any pattern to see what number it represents. The patterns which have 0
as their MSB are easy to determine without a table. The pattern represents
the binary number directly. But what decimal number is represented by
the two’s complement number 111100117 You should know that this
represents some negative number because the MSB is a 1.

Actually, you can determine the value very easily by simply taking the
two’s complement to find the equivalent positive number. Remember,
you find the two’s complement, by taking the one’s complement and
adding 1. The one’s complement is 00001100,. Thus, the two’s comple-
ment is:

00001100,
+ 1
00001101, or +13,,

Since the two’s complement of 11110011, represents +13,, then
11110011, must equal —13,,.
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Table of bit pattern values for un-
signed binary, 2's complement and 1’s
complement numbers.
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BIT UNSIGNED 2’s 1’s
PATTERN BINARY COMPLEMENT | COMPLEMENT
00000000 0 0 +0
00000001 1 +1 +1
00000010 2 +2 +2
00000011 3 +3 +3
01111100 124 +124 +124
01111101 125 +125 +125
01111110 126 +126 +126
01111111 127 +127 +127
10000000 128 —128 -127
10000001 129 -127 -126
10000010 130 —-126 -125
10000011 131 —125 —-124
11111100 252 -4 -3
11111101 253 -3 -2
11111110 254 -2 -1
11111111 255 -1 -0
Figure 3-5

3-21
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Self-Test Review

1. and are the two basic operations
that can be performed with a number system.

2. Add the following binary numbers.

A. 10011011 B. 11000110 C. 10000110
+00010111 +00110001 +00110110

3. Subtract the following binary numbers.
A. 11011011 B. 10001011 C. 11011001
—10110010 —10000001 —00111011

4.  Multiply the following binary numbers.

A. 1011 B. 1101 C. 1100
x1101 xX1001 X1100
5. Solve for the quotient in the following groups.
A. B. .
101 ) 1001011 11 /111001 1101 /11110111

6. 10001111, represents decimal ______ in sign/magnitude nota-
tion.
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7. The 1’s complement of 00010110, is

8. The 2’s complement of 00010110, is

9.  The 2’s complement number 11100110 represents the decimal
number

10. Find the signed decimal equivalents of the following two’s com-
plement numbers.

Two’s Complement Number Decimal Number

00000111
10000111
11111111
01110000
10000000

11. Find thetwo’s complement representation for the following signed
decimal numbers.

Decimal Number Two’s Complement Number

+32
-32
+73
-7
—-120

3-23
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Answers
1. Addition, subtraction.
2. A. Carry: 00011111
Addend: 10011011
Augend: + 00010111
Sum: 10110010
B. 11110111.
C. 10111100.
3 A. Minuend after borrow: 101011011
Minuend: 11 011011
Subtrahend: - 10 110010
Difference: 101001
B. 1010.
C. 10011110.
4 A. Multiplicand: 1011
Multiplier: x 1101
First partial product: 1011
Second partial product: 00000
Carry: 0000
Sum of partial products: 01011
Third partial product: 101100
Carry: 01000
Sum of partial products: 110111
Fourth partial product: 1011000
Carry: 1110000
Final product: 10001111
B. 1110101.
C. 10010000
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0001111 Quotient
5. A. Divisor: 101 ) 1001011 Dividend
101
1000 Remainder
101
111 Remainder
101
101 Remainder
101
0 Remainder
B. 10011.
C. 10011.
6. -15.
7. 11101001,.
8. 11101010,.
9. First, find the two’s complement of 11100110 by changing 1's
to 0’s; 0’s to 1’s; and adding 1:
00011001
1
00011010
Since this number represents +26,,, the original number must
have represented —26,,.
10. Two’s Complement Number Decimal Number
00000111 +7
10000111 -121
11111111 -1
01110000 +112
10000000 —-128
11. Decimal Number Two’'s Complement Number
+32 00100000
-32 11100000
+73 01001001
-7 11111001
—-120 10001000

3-25
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In the previous section, you saw that signed numbers are represented in
microprocessors in two’s complement form. In this section you will see
why.

In digital electronic devices such as computers, simple circuits cost less
and operate faster than more complex ones. Two’s complement numbers
are used with arithmetic because they allow the simplest, cheapest, and
fastest circuits.

A characteristic of the two’s complement system is that both signed and
unsigned numbers can be added by the same circuit. For example, sup-
pose you wish to add the unsigned numbers 132, and 14,,. The addition
looks like this: )

Addend: 10000100, 132,
Augend: 00001110, + 144,
Sum: 10010010, 146,

"As you saw in the previous unit, the microprocessor has an ALU circuit

that can add unsigned binary numbers in this way. The adder in the ALU
is designed so that when the bit pattern 10000100 appears at one input
and 00001110 appears at the other, the bit pattern 10010010 appears at
the output.

The question arises, “How does the ALU know that the bit patterns at the
inputs represent unsigned numbers and not two’s complement num-
bers?”’ The answer is ‘‘it doesn’t.” The ALU always adds as if the inputs
were unsigned binary numbers. Nevertheless, it still produces the correct
sum even if the inputs are signed two’s complement numbers.

Look at the example given above. If you assume that the inputs are two’s
complement signed numbers, then the addend, augend, and sum are:

Addend: 10000100, —-124,,
Augend: 00001110, + 14,
Sum: 10010010, —110,

Notice that the bit patterns are the same. Only the meaning of the bit
patterns has changed. In the first example, we assumed that the bit
patterns represented unsigned numbers and the adder produced the
proper unsigned result. In the second example, we assumed that the bit
patterns represented signed numbers. Again, the adder produced the
proper signed resuit.
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This proves a very important point. Theadder in the ALU always adds bit
patterns as if they are unsigned binary numbers. It is our interpretation of
these bit patterns that decides if unsigned or signed numbers are indi-
cated. The beauty of two’s complement is that the bit patterns can be
interpreted either way. This allows us to work with either signed or
unsigned numbers without requiring different circuits for each.

Two’s complement arithmetic also simplifies the arithmetic logic unit in
another way. All microprocessors have a subtract instruction. Thus, the
ALU must be able to subtract one number from another. However, if this
required a separate subtraction circuit, the complexity and cost of the
ALU would be increased. Fortunately, two’'s complement arithmetic
allows the ALU to perform a subtract operation using an adder circuit.
That is, the MPU uses the same circuit for both addition and subtraction.

The MPU performs subtraction by a binary addition process. To see why
this works, it may be helpful to look at a similar process with the decimal
number system. The decimal equivalent of two’s complement is called
ten’s complement. Since you are more familiar with the decimal number
system, briefly examine ten’s complement arithmetic.

Ten’s Complement Arithmetic

An easy way to illustrate ten’s complement is to consider an analogy.
Visualize the odometer or mileage indicator on your car. Generally, this is
a six-digit device that indicates mileage between 00,000.0 and 99,999.9
miles. Let’s ignore the tenths digit and concentrate on the other five.

In an automobile, the register generally operates in only one direction
(forward). However, consider what happens if it is turned backwards
instead. Starting at +3 miles, the count proceeds backwards as follows:

00,003
00,002
00,001
00,000
99,999
99,998
99,997
etc.

It is easy to visualize that 99,999 represents —1 mile. Also, 99,998 repre-
sents —2 miles; 99,997 represents —3 miles; etc. This is how signed
numbers are represented in ten’s complement form.
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Once you accept this system for representing positive and negative num-
bers, you can perform arithmetic with these signed numbers. For exam-
ple, if you add +3 and -2, the result should be +1. Using the system
developed above, +3 isrepresented by 00003 while —2 is represented by
99,998. Thus, the addition looks like this:

00003 +3
+99998 —2
100001 +1

Discard final carry.

If you now discard the final carry on the left in the sum, the answer is 000
01, the representation of +1. You can also find the ten’s complement of a
digit by subtracting the digit from ten. For example, the ten’s comple-
ment of 6 is 4 since 10-6 = 4. To complement a number containing more
than one digit, raise ten to a power equal to the total number of digits,
then subtract the number from it. For example, to obtain the ten’s com-
plement of 654, first raise ten to the third power since there are three
digits in the number. Then, subtract 654 from the result.

10® = 1000
—654
346

Thus, the ten’s complement of 654,, is 346
Once you find the ten’s complement, you can subtract one number from

another by an indirect method using only addition. Since childhood you
have subtracted like this:

Minuend: 973
Subtrahend: —654

Difference: 319
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However, you can arrive at the same answer by using the ten’s comple-
ment of the subtrahend and adding. Recall that the ten’s complement of
654, is 346,,. Let’s compare these two methods of subtraction:

STANDARD METHOD TEN’S COMPLEMENT METHOD

Minuend 973 973 Minuend
Subtrahend  —654 +346 Ten’s complement of subtrahend
Difference 319 1319 Difference

LDiscard final carry

Notice that when you use the ten’s complement method, the answer is too
large by 1000,,. However, you can still arrive at the correct answer by
simply discarding the final carry.

While the ten’s complement method of subtraction works, it is not used
because it is more complex than the standard method. In fact, it does not
eliminate subtraction entirely since the ten’s complement itself is found
by subtraction.

The binary equivalent of ten’s complement is two’s complement. It over-
comes the disadvantage of ten’s complement in that the two’s comple-
ment can be formed without any subtraction at all. Recall that you can
form the two’s complement of a binary number by changing all 0’s to 1’s,
all 1’sto 0’s and then adding 1. Let’s examine two’s complement arithme-
tic in more detail.

Two’s Complement Subtraction

As in ten’s complement arithmetic, you can form the two’s complement
by subtracting from a power of the base (two). However, because the MPU
cannot subtract directly, it uses the method given earlier for finding the
two’s complement. Once the two’s complement is formed, the MPU can
perform subtraction indirectly by adding the two’s complement of the
subtrahend to the minuend.

To illustrate this point, look at the following two ways of subtracting 26,,
from 69,,. The two numbers are expressed as they would appear to an
8-bit microprocessor. The standard method of subtraction looks like this:

Minuend: 01000101, 69
Subtrahend: -00011010, -26
Difference: 00101011, 43
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While this method works fine on paper, it’s of little use to the micro-
processor since the MPU has no subtract circuitry. However, the MPU can
still perform subtraction by the indirect method of adding the two's
complement of the subtrahend to the minuend:

Minuend: 01000101
Two’s complement of Subtrahend: +11100110
Difference: 100101011

Discard final carry

This illustrates a major reason for using the two’s complement system to
represent signed numbers. It allows the MPU to perform subtraction and
addition with the same circuit.

The method that the MPU uses to perform subtraction is of little impor-
tance to the user of microprocessors. Most microprocessors have a sub-
tract instruction. This instruction is used like any other without regard
for how the operation is implemented internally. When the subtract
instruction is implemented, the MPU automatically takes care of opera-
tions like complementing the subtrahend, adding, and discarding the
carry. The procedure has been explained here so you can appreciate the
importance of two’s complement arithmetic.

Arithmetic With Signed Numbers

There are many applications in which the microprocessor must work
with signed numbers. In these cases, signed numbers are represented in
two’s complement form. While this greatly simplifies the circuitry of the
MPU, it places an extra burden on the user. The programmer must ensure
that all signed numbers are entered into the microprocessor in two’s
complement form. Also, the resulting data produced by the MPU may be
in two’s complement form. Here’s how an 8-bit MPU handles signed
numbers.

Adding Positive Numbers. Assume that the MPU is to add the two
positive numbers +7 and +3. Since an 8-bit MPU is assumed, the arith-
metic operation looks like this:

00000111 + 7
+00000011 + 3
00001010 +10
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The sign bits are underlined. Remember, when representing signed
numbers, that the MSB is the sign bit. A 0 represents “+” and a 1
represents ‘“‘—.”” In this example, you added +7 and +3 to form a sum of
+10y,. You know that all three numbers are positive since the MSB’s are
all 0’s.

While this operation seems straightforward enough, it is easy for the
unwary to make an error when adding positive numbers. Remember, the
highest 8-bit positive number you can represent in two’s complement
form is +127,. If the sum exceeds this value, an error occurs. For exam-
ple, suppose you attempt to add +65,, to +67,,. The MPU adds the
numbers as if they are unsigned binary:

01000001
01000011
10000100

If the answer is interpreted as a two’s complement number, an error has
occurred. You have added two positive numbers and yet the answer
appears to be negative since the MSB of the sum is 1. This is called atwo’s
complement overflow. It occurs when the sum exceeds +127,,. Many
microprocessors have a way of detecting this condition. We will discuss
this in more detail in a future unit. .

Adding Positive and Negative Numbers. The real beauty of the two’s
complement system is illustrated when you add numbers with unlike
signs. For example, assume that an 8-bit microprocessor is to add +7 and
—3.Remember, since these are signed numbers, they must be represented
in two’s complement form. That is, +7 is represented as 00000111, while
—3 isrepresented as 11111101,. If these two numbers are added, the sum
will be:

Addend: 00000111 (+7)
Augend: +11111101  +(-3)
Sum: 100000100 (+4)

Discard final carry

Notice that the sum is correct if you ignore the final carry bit. Keep in
mind that the MPU adds the two numbers as if they were unsigned binary
numbers. It is merely our interpretation of the answer that makes the
system work for signed numbers.
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The system also works when the negative number is larger. For example,
when —9 is added to +8 the result should be —1. Remember, the signed
numbers must be represented in two’s complement form:

Addend: 11110111 (-9)
Augend: 00001000 +(+8)
Sum: 11111111 -1

Notice that the sum is the two’s complement representation for —1.

Adding Negative Numbers. The final case involves two negative num-
bers. If both numbers are negative, then the sum should also be negative.

For example, suppose the MPU is to add —3 to —4. Obviously, the result
should be —7. The two signed numbers must be represented in two’s
complement form. That is, —3 must be represented as 11111101, while
—4 must be represented as 11111100,. The MPU adds these two bit
patterns as if they were unsigned binary numbers. Thus the result is:

Addend: 11111101 (-3)
Augend: +11111100 +(—4)
Sum: 111111001 (—7)

Discard final carry
Once again, the answer is correct if you ignore the final carry bit.

When you add two negative numbers, you must remember the capacity of
the MPU. The largest negative number that can be represented by eight
bits is —128,,. If the sum exceeds this value, the sum will appear to be in
error. For example, suppose you add —120,, to —18,,.

10001000  (—120)
11101110 +(— 18)

/1 01110110
Ignore carry \
Sign bit

Notice that the sign bit in the sum is 0, representing a positive number.
Thus, the MPU has added two negative numbers and has produced a
positive result. This apparent error is caused by exceeding the 8-bit
capacity. This is another example of two’s complement overflow.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

In microprocessors, signed numbers are represented in
form.

The ALU adds bit patterns as if they represent
binary numbers.

When a microprocessor executes a subtract instruction, what oper-
ations are actually performed inside the MPU?

What is the largest 8-bit positive number that can be represented in
two’s complement form?

When you areadding two positive numbers, what is meant by two’s
complement overflow?

If +19,and —21,, are added by an 8-bit microprocessor, the two's
complement result will be

Cantwo’s complement overflow occur when two negative numbers
are added?

A microprocessor adds 10001110, to 00010001,. If these are un-
signed binary numbers, the resulting bit pattern will be
If these are two’s complement numbers, the re-
sulting bit pattern will be

If the bit patterns in question 19 represent unsigned numbers, the
resulting bit pattern represents decimal

If the bit patterns in question 15 represent two’s complement num-
bers, the resulting bit pattern represents decimal
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Answers

12. Two’s complement.
13. Unsigned.
14. The following operations occur:
1. The MPU complements the subtrahend by changing 0’s to 1’s
and 1's to 0’s.
2. One is added to the complemented subtrahend to form the
two’s complement.
3. The two’s complement of the subtrahend is added to the
minuend.
15. 01111111, or +127,,.
16. When you add positive numbers, two’s complement overflow oc-
curs when the sum exceeds +127,,.
17. 11111110, or —2,,.
18. Yes. When you add negative numbers, two’s complement overflow
occurs when the sum exceeds —128,,.
19. In either case, the resulting bit pattern will be 10011111.
20. 159,,.
21. =97,
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BOOLEAN OPERATIONS

Along with the basic mathematical processes examined earlier, the mi-
croprocessor can manipulate binary numbers logically. This system was
conceived using the theorems developed by the mathematician George
Boole. As a result, this branch of binary mathematics is given the name
Boolean Algebra. In this section, the Boolean operations performed by
the microprocessor will be examined. A more detailed description of
Boolean Algebra is provided in the Heathkit Continuing Education Series
course titled ‘“Digital Techniques.”

AND Operation

The AND function produces the logical product of two or more logic
variables. That is, the logical product of an AND operation is logic 1 if all
of the variable inputs are logic 1. If any of the input variables are logic 0,
. thelogical product is 0. This process can be represented by the formula A
* B = C, where A and B represent input variables (logic 1 or 0) and C
represents the output or logical product of the AND operation. The AND
function is designated by a dot between the variables. Do not confuse it
with the mathematical multiplication sign.

Figure 3-6 is a “truth” table for a two-variable AND function. The 1's and
0’srepresent all of the possible logic combinations. Thus, you can see that
~ the AND function is a sort of “all or nothing” operation. Unless all the
input variables are logic 1, the output cannot be logic 1.

INPUTS | OUTPUT

>
oo
@)

= o= 00
= O = O
= O O O

Figure 3-6
Truth Table for an AND function.
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When the microprocessor implements the logic AND operation, one 8-bit
binary number is ANDed with a second 8-bit binary number. Refer to
Figure 3-7 for an illustration of this process.

8-BIT 8-BIT RESULT OF
NUMBER NUMBER AND OPERATION _
MSB 1 . 1 = 1 MSB
0 . 0 = 0 —
0 . 1 = 0
1 . 0 = 0
1 . 1 = 1 —_
0 . 1 = 0
1 . 0 = 0
LSB o . 0 = 0 LSB —
Figure 3-7

8-bit logic AND operation. —
Although more than two logic variables can be ANDed together, the
microprocessor operates on only two variables at a time. Now try one —

more example of the AND operation. AND 10011101 with 11000110.

MSB -

l1e1=1

0«1=0

0<-0=0

1-0=0 —
1-0=0

1-1=1

0«1=0 —
1-0=0 LSB

OR Operation B

The OR (sometimes known as inclusive OR) function produces the logi-
cal sum of two or more logic variables. That is, the logical sum of an OR
operation is logic 1 if either input is logic 1. The logical sum is 0 if all of
the input variables are logic 0. This process can be represented' by the
formula A + B = C, where A and B represent input variables and C
represents the output or logical sum of the OR operation. The OR function
is designated by a plus sign {or a circled dot () ) between the variables. _
Do not confuse the plus sign with the mathematical add sign.
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Figure 3-8 is a “‘truth” table for a two-variable OR function. The 1’s and
0’srepresent all of the possible logic combinations. Thus, you can see that
the OR function is a sort of “either or both” operation. If either or both
input variables are logic 1, the output must be logic 1.

INPUTS | OUTPUT
A B Cc
0 0 0
1 0 1
0 1 1
1 1 1
Figure 3-8

Truth Table for an OR function.

When the microprocessor implements the logic OR operation, one 8-bit
binary number is ORed with a second 8-bit binary number. Refer to
Figure 3-9 for an illustration of this process.

8-BIT 8-BIT RESULT OF
NUMBER NUMBER OR OPERATION

MSB 1 + 1 = 1 MSB

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

0 + 1 = 1

1 + 0 = 1
LSB 0 + 0 = 0 LSB

Figure 3-9

8-bit logic OR operation.
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As with the AND function, two or more logic variables can be ORed
together. However, the microprocessor operates on only two variables at
atime. Now try one more example of the OR operation. OR 10011101 with
11000101.

1+1=
0+1
0+0
1+0
1+0
1+1
0+0
1+1=

MSB

I I
P OR P R O R

LSB

Exclusive OR Operation

The Exclusive OR (EOR or XOR) function performs a logical test for
“equalness” between two logic variables. That is, if two variable inputs
are equal (both logic 1 or 0}, the output or result of the EOR operation is
logic 0. If the inputs are not equal (one is logic 1, the other logic 0) the
output is logic 1. This can be represented by the formula A @ B =C,
where A and B represent input variables and C represents the output or
result. The EOR function is designated by a circled plus sign between the
variables.

Figure 3-10 is a ‘‘truth” table for the EOR function. The 1’s and 0’s
represent all of the possible logic combinations. You can see that the EOR
function is a sort of “‘either but not both” operation. That is, either input
can be logic 1 or 0, but not both for a logic 1 output.

INPUTS | OUTPUT
A B C
0 0 0
0 1 1
1 0 1
1 1 0
Figure 3-10

Truth Table for an EOR function.
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When the microprocessor implements the logic EOR operation, one 8-bit
binary number is exclusively ORed with a second 8-bit number. Refer to
Figure 3-11 for an illustration of this process.

8-BIT 8-BIT RESULT OF
NUMBER NUMBER EOR OPERATION
MSB 1 @ 1 = 0 MSB
0 @ 0 = 0
0 @ 1 = 1
1 @ 0 = 1
1 @ 1 = 0
0 @ 1 = 1
1 @ 0 = 1
LSB 0 @® 0 = 0 LSB
Figure 3-11

8-bit logic EOR operation.

Now try one more example of the EOR operation. EOR 10011101, with
11000101..

1@ 1=0 MSB
0D 1=1
0Do=0
1®@0=1
1@0=1
1®1=0
0@o=o0
1®1=0 LSB



3-40

UNIT THREE

HEATHKIT

CONTINUING

Invert Operatii)n

The invert operation performs a direct complement of a single input
variable. That is, a logic 1 input will produce a logic 0 output. This
process can be represented by the truth table in Figure 3-12.

INPUT | OUTPUT

A
1
0

HO}I

Figure 3-12
Truth Table for an invert function.

Note that the complement of A is A. The bar above the A indicates that A
has been inverted, and isread “‘not A.”” Therefore, the complement of A is

“not A” (A).

When the microprocessor implements the logic invert operation, the
8-bit binary number is complemented. This operation isalso knownas 1's
complement. Thus, the complement of 11010110, is 00101001,. As with
the previous logic operations, the invert function operates on each indi-
vidual bit of the 8-bit number.
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22.

23.

24.

25.

26.

The result of an AND operation is binary 1 when:
A. All inputs are binary 0.

B. Any one input is binary 0.

C. All inputs are binary 1.

D. Any one input is binary 1.

Perform the AND operation on the following 8-bit number pairs.

A. 11010110 and 10000111.

B. 00110011 and 11110000.

C. 10101010 and 11011011,

The result of an OR operation is binary 0 when:

A. All inputs are binary 1.

B. All inputs are binary 0.

C. Any one input is binary 1.

D. Any one input is binary 0.

Perform the OR operation on the following 8-bit number pairs.
A. 11010110 and 10000111.

B. 00110011 and 11110000.

C. 10101010 and 11011011.

The result of an XOR operation is binary 0 if the inputs are:
A. Equal.

B. Not equal.
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27. The symbol for the EOR operation is:

A

B. +
C. ®
D. x

28. Perform the EOR operation on the following 8-bit number pairs.

A. 11010110 and 10000111.
B. 00110011 and 11110000.
C. 10101010 and 11011011.

29. A represents the of A.

A. Sum.
B. Product.
C. Complement.
D. Supplement.
30. Perform the invert operation on the following 8-bit numbers.
A. 11010110.
B. 00110011.

C. 10101010.
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Answers

22. C. All inputs are binary 1.

23. A

.
il

L) .
= e e 0000 -
[T
O = = 0000

OB PO R O R R
L]

B. 00110000.
C. 10001010.
24. B. All inputs are binary 0.

25. A 1+1=
1+0
0+0
1+0
0+0
1+1
1+1
0+1=

nwn oo
O e T T i == T S

B. 11110011.
C. 11111011.

26. A. Equal.
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27.

28.

29.

30.

@
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11000011.

01110001.

Complement.

00101001.

11001100.

01010101.

EXPERIMENT 4

Perform Experiment 4 in Unit 9 of this course. After you finish the
experiment, return to this Unit and complete the Unit Examination.
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1.

10.

11.

12.

13.

14.

Add 10010110, to 1101,.
Subtract 1011, from 10110'1102.
Multiply 1001, by 1100,.
Divide 100111, with 110,.

The 1's complement of 00110110, is

The 2’s complement of 00110110, is

Using 2’s complement arithmetic, add +75,, to —6,,.

Using 2’s complement arithmetic, add —=35,, to —75,,.

Using 2’s complement arithmetic, subtract —15,, from —85,,.

The truth table Figure 3-13represents the logical
function.

INPUT |[OUTPUT

A B C

0 0 0

1 0 1

0 1 1

1 1 0
Figure 3-13

Truth Table for Exam Question 10.
Logically AND 11011010 with 10010110.

Logically OR 11011010 with 10010110.

Logically EOR 11011010 with 16010110.

Logically invert 11011010.
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