HEATHKIT

CONTINUING
EDUCATION

A —— g

Individual Learning
Program

MICROPROCESSORS

Unit 4
INTRODUCTION TO PROGRAMMING

EE-3401

HEATH COMPANY Copyright © 1977

Heath Company
BENTON HARBOR, MICHIGAN 49022 All Rights Reserved

Printed in the United States of America

HEATHKIT

CONTINUING
4-2 | uniT FOUR SoucATION

"

CONTENTS

Introductiont e 4-3
Unit Objectivest e 4-4
Unit Activity Guideo 4-5
Branchingn .. 4-6
Conditional Branching L 4-20
Algorithms................ R R R RS 4-29
Additional Instructionst 4-46
Experiments 4-58
Unit Examination......... i 4-59

O ——pt—————— !
HEATHKIT . , A
CONTINUING Introduction to Programming 3

SEm et emms o

Unit 4

INTRODUCTION
TO PROGRAMMING

INTRODUCTION

In the final analysis there are only two things you can do with a micro-
processor. You can program it and you can interface it with the outside
world. In this course, you learn to program the microprocessor first. This
unit, along with the associated cassette tape and experiments, will serve
as an introduction to programming.

The programs you encounter in this unit are simple enough that anyone
can understand them, and yet they illustrate many important concepts.
By studying these programs, you will develop an understanding of how
the microprocessor handles complex tasks. At the same time, you will
gain practice using the instruction set.

4-4

UNIT FOUR

UNIT OBJECTIVES

When you have completed this unit, you will be able to:

1.

Explain the difference between machine language, assembly lan-
guage, interpretive language, and compiler language.

Define assembler, compiler, interpreter, object program, source
program, BASIC, FORTRAN, and COBOL.

Draw the symbols used in flow charting and explain the purpose of
each.

Develop flow charts that illustrate step-by-step procedures for solv-
ing simple problems.

Explain the purpose of conditional and unconditional branching.

Using the block diagram of the hypothetical microprocessor, trace
the data flow during the execution of a branch instruction.

Compute the proper relative address for branching forward or
backward from one point to another in a program.

Explain the purpose of the carry, negative, zero, and overflow flags.
Give an example of a situation that can cause each to be set and
another example that will cause each to clear. List eight instruc- -
tions that test one of these flags.

Write programs that can: multiply by repeated addition; divide by
repeated subtraction; convert binary to BCD; convert BCD to bi-
nary; add multiple-precision numbers; subtract multiple-precision
numbers; add BCD numbers.

Introduction to Programming

UNIT ACTIVITY GUIDE

Play Cassette Tape Section
“Introduction to Programming.”

Read Section on Branching.
Complete Self-Test Review Questions 1-9.
Read Section on Conditional Branching.

Read Section on Algorithms.

Read Section on Additional Instructions.

Complete Unit Examination.

O O O Ooooooodoogogoo d

Check Examination Answers.

Complete Self-Test Review Questions 10-19.

Complete Self-Test Review Questions 20-29.

Complete Self-Test Review Questions 30-37.

Perform Programming Experiments 5 and 6.

Completion

Time

4-5

4.6

UNIT FOUR

—_——
HEATHKIT
CONTINUING
_EbUcaTioN

N~

BRANCHING

The programs discussed earlier were all “‘straight line’” programs: the
instructions were executed one after another in the order in which they
were written. Programs of this type are extremely limited because they
use only a fraction of the microprocessor’s power.

The real power of the microprocessor comes from its ability to execute a
section of a program over and over again. In an earlier program we saw
that two numbers could be multiplied by repeated addition. As long as
the numbers are very small and we know the value of the two numbers,
we can write a ‘“straight line” program to multiply the numbers. For
example, 9 could be multiplied by 4 with the following program:

Address Instruction/Data Comments
00 LDA 05 Load direct
01 ADD 05 Add direct
02 ADD 05 Add direct
03 ADD 05 Add direct
04 HLT
05 09

This technique is very crude for a number of reasons. If the two numbers
are large, such as 98 and 112, the number of ADD instructions becomes
excessive. Moreover, the values of the two numbers to be multiplied are
generally not known. Therefore, even if we were willing to write enough
ADD instructions, we simply would not know how many to write. Obvi-
ously, some better technique must be available.

Atechniquethatisused in virtually every program is called looping. This
allows a section of the program to be run as often as needed. Every
microprocessor has a group of instructions called JUMP or BRANCH
instructions that allow it to execute these program loops. These allow the
microprocessor to escape the normal instruction sequence.

The microprocessor discussed in this course has both jump and branch
instructions. In this unit, we will confine our discussion to the branch
instructions. In a later unit we will discuss the jump instructions.

Before discussing the types of branch instructions, we must first discuss a
new addressing mode called relative addressing.

HEATHKIT
CONTINUING
EDUCATION

Introduction to Programming

Relative Addressing

In previous units, we discussed immediate addressing and direct
addressing. Recall that in the immediate addressing mode no address is
specified. The data is assumed to be the byte following the opcode. In
direct addressing, an address is given. The data is assumed to be at that
address.

Branch instructions are somewhat different from the instructions
discussed earlier. While the branch instruction has an address associated
with it, the address does not indicate the location of data. Instead, the
address indicates the location of the next instruction that is to be exe-
cuted.

The format of the branch instruction is shown in Figure 4-1. All branch
instructions are 2-byte instructions. The first byte is the 8-bit opcode.
This code identifies the particular type of branch instruction. As you will
see later, a microprocessor may have a dozen or more different branch
instructions. Each has its own opcode that uniquely identifies it.

QELATIVE ADDRESS

secons avre [T LLLLJo v imsravcrion

TO 3E EXECUTED

Figure 4-1
Format of the branch instruction.

The second byte of the branch instruction indicates the point to which the
program is to branch. That is, it specifies the address of the next instruc-
tion that is to be executed.

In some microprocessors, the address is absolute. That is, the address is
the memory location that holds the next instruction. In this case, the
instruction BRANCH 30,5 would mean that the instruction to be executed
next is at address 30,6. In other words, some microprocessors use direct
addressing when branching.

Our hypothetical microprocessor uses a different technique called rela-
tive addressing. In this addressing mode, the byte following the opcode
does not represent an absolute address. Instead, it is a number that must
be added to the program counter to form the new address. Consider the
instruction:

BRANCH 30,

4-7

4-8

UNIT FOUR

HEATHKIT
CONTINUING
_EDUCATION

== e

Using relative addressing, this does not mean that the next instruction is
to be taken from memory location 30, Rather, it means that 30, must be
added to the present contents of the program counter. Thus, if the pro-
gram counter is at 08, when the BRANCH 30,4 instruction is executed,
the next instruction will be fetched from location 08,5 + 30, = 384.

By the same token, if the contents of the program counter is FA;; when a
BRANCH 03 is encountered, the next instruction will be fetched from
location FA; + 03 = FD,. Notice that this allows the MPU to jump over
the instructions at addresses FB,s and FCy.

Executing a Branch Instruction

Determining the relative address to use as the second byte of the branch
instruction can be confusing unless you keep in mind the method by
which the MPU executes a program. Therefore, let’s go through the
manipulations that take place within the MPU during the execution of
the branch instruction.

Figure 4-2 shows sections of a program stored in memory. Let’s assume
that the MPU has been executing this program. Let’s further assume that
the MPU just completed the execution of the LDA 05 instruction at
addresses 12,5 and 13 .. The address register still holds the address cf the
last byte that was read from memory. The accumulator and data register
hold the contents {05) of the last location that was read out.

Notice that the program counter contains the address of the next instruc-
tion to be executed. This address points to the branch instruction in
memory location 14,4 Let’'s pick up the action at this point.

——
HEATHKIT vossson oo | 4.9
EDUCATION . ntroduction to Programming

F--1

! MICROPROCESSOR UNIT

H (MPU)
ARITHMETH
LOGIC UNIT
ALY '.
CONTROLLER-
SEQUENCER

[OTT T T T T
accunutator Joloiololol1]o]1

‘”“v” PROGRA™M INSTRUCTIONE
0{0]0| 11011010t} -+ i1

DECODER
(TFTZZTZ A aparess (T T LRI
(ofofo[olol 1 }icc s [olofololof 1 ol 1]} sus

REGISTER 3

ADQRESJ BINARY aNgONICS/ |
CONTENTS! CONTENTS

t +

0C01 35137 1900 T11) L3A
3001 2911, 2000 2191 M1,
3010 0930 34
2000 2111

N g
0001 1100 | ———— !
0001 1191 1520 1911 ATD

300 11134 acoe st
0001 1111
B

Figure 4-2
Status of the MPU registers after
executing the LDA 05 instruction.

HEATHKIT
4-10 | uniT Four

Figure 4-3 shows how the first byte of the branch instruction is fetched.
This is the standard fetch operation that was discussed earlier:

1. The address (14, is transferred from the program counter to
the address register.

2. The program counter is incremented to 15.

3. The address is strobed onto the address bus.

4. The contents of the selected memory location are transferred
via the data bus to the data register.

5. Theinstruction decoder examines this opcodeand finds it to be
a branch instruction.

F--1
! MIcROPROCESSOR UNIT H
1 (MPU) SR :
H ARITHMETIC | H
1 LOGIC UNIT § H
: TALUY 1
1 CONTROLLER- H
: SEQUENCER :
: L E T ET TP * H
! accumutator [ojololofol1]ol1L “ama’ i
! 2| i
H é’ﬂ” PROGRAM INSTRUCTION b i
1 COUNTER 2
! DECODER !
[} . :
i A/ |
H Mol 8 L 2 L LAY ADDRESS o o e o P 1
, e [oloffolofoofo]) pure |
1 = REGISTER |

"MEMORY
CBANARY [MNEMONIGS/
CONTENTS] CONTENTS

KDRRESS

6051 0010] A3
5001 5011 | 6000 0181}
0061 21091 3918 0009
0001 B1a1{ 0600 61117
BT BITE | mmrriwioeme

QA6 1100 e |
Bo01 1101 | 1oee 1or1]
R

Figure 4-3
Fetching the BRA instruction.

900 1T E el
e . s

Introduction to Programming 4-1 1

Therefore, the controller-sequencer starts the procedure for executing a
branch instruction.

- During the next machine cycle, the relative address is fetched. This
procedure is shown in Figure 4-4. The major events are:

— 1. The address (15,) is transferred from the program counter to
the address register. :
2. The program counter is incremented to 16.
— 3. The address (15,4) is strobed onto the address bus.
4. The contents of location 15,4 are transferred to the data register
via the data bus.

P--'-1

: MICROPROCESSOR UNIT
(MPU)

LOGIC UNIT
TALUY

CONTROLLER-
SEQUENCER

ACCUMULATOR |O}0 |0l
— Emnm’ PROGRA INSTRUCTION F
COUNTER .
- DECODER |
= ;

ol Lol £ 82 Lo/ ADORESS BRGSO L L 9 4
REGlSTER 0{0]0|0|O[11 [1E) pata

REGISTER ¢

"MEMORY
‘A‘Dm{ggs BINARY | MNEMONICS/
FCONTENTS| CONTENTS

T
0001 20101080 8110 LDA
0001 0011 | 0000 101
0001 0190 0010 0000 BRA
0001 2101 5000 0111 Iy
0801 0310 ——e

Figure 4-4
Fetching the relative address.

— B
0001 1101|1080 1011]
0801 1119 | no0g 0110
0001 FTIE ———

—

4-12 l UNIT FOUR

Figure 4-5 shows the state of the various registers after the relative
address is fetched. The relative address (07,¢) is in the data register. Now
look at the program counter. Notice that it points to address 16,;. How-

. ever, the MPU has not yet finished executing the branch instruction. It

must now compute the new address by adding the relative address to the
program count. It uses the addition capabilities of the ALU to perform
this function. That is, the program count and relative address are strobed
into the ALU. The ALU adds the two together and produces a sum of

0001 o011C program count
0000 0111 relative address
0001 1101 new program count

This sum is loaded into the program counter. Thus, the next instruction is
fetched from memory location 1D, That is, the next instruction to be
executed is the ADD 06,4 instruction.

Introduction to Programming 4'1 3

'---- - e e - D D ED S D D ED S G ES s ED D ED S AP S5 aD ED S
: MICROPROCESSOR UNIT
(MPU)

CONTROLLER-
SEQUENCER

Yy

o e e S,

PROGRAM
COUNTER

INSTRUCTION
DECODER

\d

ol L LY ADDRESS ﬂﬂr’ﬂ”
[ofofo[1[0 1[o[1]} arcis e [ofolofo[o[s [} oar
REGlSTERl

- - - - - - - - - - - o o o]

| BINARY |MNEMONICS/
CONTERTS| CONTENTS
1811800 0§10
| 00900101 |
o g]
0880 01

1400-1011 4
10} o000 0110}

Figure 4-5
Computing the address of the
next instruction.

414

UNIT FOUR

HEATHKIT

CONTINUING
EDUCATION

N

Branching Forward

Branching in the forward direction is a simple task if you know the value
of the program count when the relative address is added. A couple of
examples will illustrate the procedure.

In Figure 4-6A, the BRANCH 03 instruction is placed in locations 32,4
and 33,. Assuming this instruction is executed, from which location will
the next instruction be fetched? Remember that the program counter will
always point to the next byte in sequence. Since the last byte fetched was
the relative address from location 33,4, the program counter must be at
34, when the relative address is added. Adding the relative address
produces a new program count of

34

+ 346
3716

Thus, the next instruction will be fetched from location 37.

HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
32 20 BRA
33 03 03 A
34 —_ —
35 — —
36 — —
37 _ —
/ 38 - ~
Program will
branch to here
HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
Figure 4-6 18 20 BRA
Branching forward. r—-:Z 77 ”?
18\ Originating Address
1C
1D B
1E
1F

20
21

\ gg / Destination Address
24 l

—
/

We wish to

Branch to here

HEATHKIT
CONTINUING

Introduction to Programming

Figure 4-6B shows a slightly different situation. Here we wish to branch
tothe instruction at address 24 ;. The opcode for the branch instruction is
at address 18,,. What relative address is required at location 19,4 in order
to implement this branch?

Keep in mind that the program count will automatically advance to 1A
after the relative address is fetched from address 19,5. Also, remember
that the relative address is added to the program count. Thus, a relative
address of 00 would result in a “branch” to location 1A, A relative
address of 01 would result in a branch to location 1B,,. Continuing this
procedure until location 24 4 isreached, you find that a relative address of
10, is required. That is, the relative address must be 0A 4 or 10,,.

There is a simple procedure for determining the relative address when
branching forward. Subtract the originating address from the destination
address. The difference is the relative address.

In our example, the originating address is 1A,,. Remember this is the
program count at the time the relative address is added. The destination
address or the address to which you wish to branch is 24 ;. Subtracting
the originating address from the destination address, you find that the
required relative address is

0010 0100, 246 Destination address
-0001 1010, 1A Originating address
0000 1010, 0A Relative address

As you can see, a relative address of 0A 4 is called for.

4-15

4-16

UNIT FOUR

HEATHKIT
CONTINUING
_EDUCATION _

e

i, . e

Branching Backward

A backward branch is used when a part of the program is to be repeated.
The technique used for branching backward is similar to that used in
branching forward. The difference is that a negative number is used as the
relative address. As you learned earlier, two’s complement representa-
tion is used to signify negative and positive numbers. Therefore, the
relative address portion of any branch instruction is interpreted as atwo’s
complement number.

This means that bit 7 of the relative address byte is a sign bit. A 0 at bit 7
tells the MPU to branch forward; a 1 tells it to branch backward. Thus, the
positive values for the relative address extend from 0000 0000, to 0111
1111,. This is 00,4 to 7F,5 and 00,, to +127 .

The negative values extend from 1111 1111, to 1000 0000,. This is FF 4 to
80,sand —1 to —128,,. But remember, the relative address is with respect
to the present program count. At the time the relative address is added,
the program count points to the next byte after the relative address. Let’s
look at two examples of branching backward.

The first example is shown in Figure 4-7A. To what point does the MPU
branch when the branch instruction at address 5D, is executed? Notice
that the relative address is F9,4. In binary this is 1111 1001,. Recall that
this is the two’s complement representation of —7. Thus, the program
count should jump backwards 7 bytes — but from what point? Recall that
after the byte at address 5E is fetched, the program count will automati-
cally advance to 5F,; or 0101 1111,. When the relative address (F9,4 or
1111 1001,) is added, the result is

0101 1111 « 0Old program count
+ 1111 1001 < Relative Address
1 0101 1000 «— New program count

Carry is ignored——-T

The carry bit is ignored, leaving a new program count of 58,5 Thus, the
next instruction will be fetched from address 58,.

Figure 4-7B shows a different problem. Here we want the branch instruc-
tion at addresses B0 and B1 to direct the MPU back to address A0. What
relative address is required? A simple procedure is:

1. Subtract the destination address from the originating address.

2. Take the two’'s complement of the difference.

HEATHKIT

introduction to Programming 4-1 7

CONTINUING
EDUCATION
—_—
HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
56

Program 57
pranches 58
to here 59

NERREN
>

w
o
130 T T T O
o
a2
| 32

HEX HEX MNEMONICS/
ADDRESS CONTENTS | HEX CONTENTS

We wish to AQ
branch to /M
here A2
A3
Ad
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
__B1

B2

@
D
>

AT 2 T T I A A

)
~

In our example, the program count will be advanced to B2 4 after the
relative address is fetched. This is our originating address. The point to
which we wish to branch is A0. This is our destination address. Sub-
tracting yields a difference of

1011 0010, B2 Originating address
- 1010 0000, A0 Destination address
0001 0010, 126 Difference

Next you compute the relative address by taking the two’'s complement of
the difference. The two’s complement of 0001 0010, is 1110 1110,. In
hexadecimal this is EE,s. Thus, the required relative address is EE .

Figure 4-7

Branching backwards.

4-18

HEATHKIT

CONTINUING
UNIT FCUR ,, ‘109!'9!
Self-Test Review
1. What addressing mode is used by the branch instruction?
2. What does the second byte of a branch instruction indicate?

3. What happens in the MPU during the execution of the branch

instruction?
4. What type of relative address causes a branch forward?
5. What type of relative address causes a branch backwards?
6. What is the maximum number of memory locations that can be

branched over during a forward branch?

7. What is the maximum number of memory locations that can be
branched over during a backward branch?

8. The opcode for the branch instruction is at address 20,,. The rela-
tive address is 06 4. After the branch instruction is executed, from
what address will the next opcode be fetched?

9. The opcode for the branch instruction is at address 20,,. The rela-
tive address is F1,5. After the branch instruction is executed, from
what address will the next opcode be fetched?

Introduction to Programming

Answers

1. Relative addressing.

2. The second byte of the branch instruction is the relative address.
This number is added to the contents of the program counter to
form the absolute address.

3. The relative address is retrieved from memory and is added to the
program count. The new program count goes into the program
counter.

4. A positive two’s complement number.

5. A negative two’s complement number.

6. 0111 1111, or +127,,.

7. 1000 00002 or —12810.

8. 28 . Recall that during the execution of the branch instruction, the
program counter will be incremented twice to 22 4. Thus, when the
relative address (06,¢) is added, the new address becomes 28 .

9. As in answer 8, the program counter is automatically advanced to
22,4 (0010 0010,) before the relative address is added. F1,4 is
equalto 1111 0001,. When this isadded to the program count, the
new address becomes

0010 0010, Old program count
1111 0001, Relative address
1 0001 0011, New program count

Ignore carry

Thus, the next opcode will be fetched from address 134.

4-19

4-20 [UNIT FOUR

HEATHKIT
CONTINUING

CONDITIONAL BRANCHING

The branch instruction allows the MPU to jump forward over a block of
data or over a portion of a program. It also allows the MPU to jump
backwards so a group of instructions can be repeated.

Until now we have been discussing the unconditional branch instruc-
tion. This type of instruction always results in a program branch. For this
reason, it is called the BRanch Always instruction. Its mnemonic is BRA.

There are other types of branch instructions that greatly expand the
versatility of the MPU. These are called conditional branch instructions.
Unlike BRA, these instructions cause a branch only if some specified
condition is met.

A good example of a conditional branch instruction is the Branch If
Minus (BMI). This instruction may or may not initiate a branch operation,
depending on the result of some previous arithmetic or logic operation.
This instruction might be placed after a subtract instruction. If the result
of the subtraction is a negative number, the branch would be im-
plemented. Otherwise, the MPU would continue to fetch and execute
instructions in numerical order. An example may help to illustrate this.

Figure 4-8 shows part of a program that uses the branch if minus (BMI)
instruction. Let’s start with the instruction at address 95,5. This instruc-
tion causes the contents of location B0, to be loaded into the ac-
cumulator. Next, the SUB instruction subtracts the contents of location
B1,s from the number in the accumulator. The next instruction (BMI)
examines the result of the subtraction. If the result was a minus number,
the program will branch over the next three bytes. That is, the next
instruction to be executed is the STA instruction at address 9E,. Thus,

the resulting number in the accumulator is stored in location B3, and the
MPU halts.

If the result of the subtraction is not minus, the BMI instruction has no
effect. That is, the BMI instruction is fetched and executed but no branch
occurs because the specified condition is not met. In this case, the next
instruction to be executed is the STA instruction at address 9B,s. Thus,
the result of the subtraction will be stored in location B2 .

CONTINUING introduction to P i
oduction to Programming
==
HEX HEX MNEMONIC/HEX
ADDRESS CONTENTS CONTENTS COMMENTS
95 96 LDA Load accumulator direct
9% BO BO with contents of this address.
97 90 sus Subtract
98 B1 B1 the contents of this address.
99 28 BMmi If result is minus
SA 03 03 tranch this far.
98 97 STA I result is not minus, store
9C . B2 82 at this address;
9D 3E HLT then hait.
9E 97 STA It result is minus, store
9F B3 B3 it at this address:
A0 3E HLT then halt.
Figure 4-8

This program uses the BMI instruction
to make a simple decision.

Notice that the program flow can take one of two paths, depending on the
result of the subtraction. The BMI instruction gives the MPU this capabil-
ity. The conditional branch instructions are sometimes called ‘‘decision
making instructions.” The reason for this becomes obvious if you con-
sider the implications of our sample program. Here the MPU decides if
the number at address B1, is larger than that at BO,¢. The program path is
determined by the outcome of this decision. If the number in B14 is
larger, the result of the subtraction is a negative number. In this case, the
result is stored in location B3, Otherwise, the resulting difference is
stored in location B2 .

Virtually all programs must make some type of decision. Some frequently
encountered decisions are:

“Which of two numbers is larger?”

“Does this byte represent a letter of the alphabet or a numeral ?”’
““Are these two numbers equal?”’

“Is this an even number?”’

“Has the program loop been repeated the proper number of
times?”’

Conditional branch instructions are used in making all of these decisions.

4-21

4-22 l UNIT FOUR

HEATHKIT
CONTINUING

| B b T
| CONDITION CODE REGISTERS]
| 1
i 1
I ZARRY NEGATIVE ZER0D |
: REGISTER REGISTER REGISTER :
| L3 L7 (7 i
} C N Z |

|
| A \ I
SRR MUY (S gy EE -

1 F Y)

ACCUMULATOR
BIT 7 BITO

Figure 4-9
Condition code registers monitor the
operations in the accumulator.

Condition Codes

As the name implies, a conditional branch instruction causes a program
branch only if some specified condition is met. Some commonly moni-
tored conditions are:

1. Did a previous operation result in a negative number in the
accumulator?

2. Did a previous operation result in zero in the accumulator?

3. Did a previous operation result in a carry from bit 7 of the
accumulator?

To keep track of these conditions, most microprocessors have a group of
single bit registers called condition code registers. Three of these regis-
ters are shown in Figure 4-9. They are the Negative (N) Register, the Zero
(Z) Register, and the Carry (C) Register.

Negative (N) Register Recall that negative numbers are expressed in
two’s complement form. Using this system, the most significant bit de-
termines whether or not the number is negative. In an 8-bit byte, bit 7 isa
1 if the two’s complement number is negative. Thus, the N register
monitors bit 7 of the accumulator. Immediately after an operation that
involves the accumulator, the N register looks at bit 7 to see if the number
isnegative. If so, the N register is set to 1. If the number in the accumulator
is not negative, the N register is reset to 0.

Most operations that involve the accumulator affect the N register in this
way — but not all. In a later unit we will point out how this register is
affected by each instruction. In this unit, we will assume that the N
register is affected as outlined above any time a number is added to,
subtracted from, loaded into, or stored from the accumulator.

Another name for a condition code is a flag. Thus, the N register is
sometimes called the N flag or the negative flag.

Zero (Z) Register This register monitors the accumulator looking for all
zeros. Immediately after an operation that involves the accumulator, the
zero-detect circuit looks at the resulting number. If all 8 bits are 0, the Z
register is set to 1. Otherwise, the Z register is reset to 0. Most operations
that involve the accumulator affect the Z register in this way.

——
HEATHKIT |
CONTINUING Introduction to Programming 4-23

Carry (C) Register The Cregister acts somewhat like an extension of the
accumulator. You have seen that when two unsigned 8-bit numbers are
added, the sum is frequently a 9-bit number. For example:

1001 0010 8-bit addend
+ 1100 0110 8-bit augend
1 0101 1000 9-bit sum

carry -—I

Since the accumulator is an 8-bit register, the sum will not fit. The most
significant bit (the carry) would be lost if you did not have another 1-bit
register to hold it. This is the purpose of the C register. Any operation that
causes a carry out of bit 7 will set the carry register to 1. Arithmetic
operations that do not result in a carry will reset this register to 0.

The carry register is also used to keep track of ‘borrows” during subtract
operations. If a subtraction requires a borrow for bit 7, the carry flag will
also be set. For example, suppose you subtract an unsigned, binary
number from a smaller unsigned binary number. The result will, of
course, be a negative number. Moreover, bit 7 will have to *‘borrow™ a bit
to complete the subtraction. As a simple example, let’s subtract 2 from 1.
The subtraction looks like this)

Borrow — 1
0000 0001 Minuend
— 0000 0010 Subtrahend
1111 1111 Difference

The carry bit is set to 1 to indicate that a borrow operation occurred. Many
subtraction operations do not require borrows. In these cases, the carry bit
is reset to 0 to indicate that no borrow occurred.

Notice that the carry code can have different meanings, depending on the
operation involved. That is, a 1 can mean either that a carry occurred or
that a borrow occurred. The precise meaning of the 1 depends on whether
the operation was an addition or a subtraction. We will discuss some
additional aspects of the carry register in a later unit.

424

UNIT FOUR

HEATHKIT
CONTINUING
EDUCATION

S ememe

Overflow (V) Register The final condition code that is to be considered
in this unit keeps track of two’s complement overflow. Figure 4-10 shows
how this register is connected in the MPU. A special circuit detects an
overflow condition by monitoring bit 7 of the ALU’s input and output
lines. This circuit sets the V flag when an overflow occurs but clears it if
no overflow occurs.

IVERFLOW
RESISTER

10
ACCUMULATOR
IYYYYVYY)
7 0

DETECT
LOGiC

Quiry

ARITHMETIC LOGIC UNIT
iALD)

[aneur L [NPT

7 0

FROM
ACCUMULATOR

7 0
\A/ AA/

DATA PEGISTER

Figure 4-10
The overflow register monitors bit 7 of
the ALU’s input and output lines.

HEATHKIT

Introduction to Programming

Let’s see what is meant by two’s complement overflow. Recall that the
ALU adds numbers as if they were unsigned binary numbers. Even so, it
can handle signed binary numbers if the proper bit patterns represent the
negative numbers. This is the reason that the two’s complement method
of representing signed numbers has become so popular. A disadvantage
of this system is that the magnitude of the number mustbe represented by
7 bits, since the eighth bit is used as the sign. Remember that a 1 in the
MSB defines the number as negative.

Unfortunately, if two signed numbers are added and their sum exceeds
7-bits, the sign bit will be changed. For example, assume that a program
adds +73,, and +96,,. The addition looks like this:

0100 1001, +73y
0110 0000, +96,,
1010 1001, 169,

The answer is correct if all the binary numbers represent unsigned quan-
tities. However, using two’s complement, the underlined bits represent
sign bits. Therefore, the answer does not represent 169,,. Instead, it
represents —87,,. The reason for this error is that there was an overflow
from bit 6 into the sign bit (bit 7). This is one of the situations that the V
flag indicates.

When two’s complement numbers having the same sign are added, the
sum should have the same sign. That is, when two positive numbers are
added, the sum should be positive. By the same token, when two negative
numbers are added, the sum should be negative. However, an overflow
can cause the signtobereversed. The overflow logic detects this situation
and sets the V flag whenever an overflow occurs.

The sign bit can also be upset during subtract operations. For example,
when a negative number is subtracted from a positive number, the results
should be positive. Remember that subtracting a negative number is
tantamount to adding a positive number. However, in certain cases, an
overflow can reverse the sign bit. This type of overflow occurs when the
signs of the minuend and subtrahend are opposite and the difference has
the sign of the subtrahend. This condition also sets the V flag.

4-25

4-26 LUNIT FOUR

Conditional Branch Instructions

The conditional branch instructions available in our hypothetical micro-
processor are shown in Figure 4-11. While these are largely self-
explanatory, a couple of points should be mentioned.

INSTRUCTION MNEMONIC OPCODE | BRANCH IF
Branch It Carry Clear BCC 24 C=0
Branch It Carry Set BCS 25 C=1
Branch If Not Equal Zero BNE 26 Z=0
Branch If Equal Zero BEQ 27 Z=1
Branch if Plus BPL 2A N=0
Branch If Minus BMI 28 N=1
Branch If Overflow Clear BvC 28 V=0
Branch If Overflow Set BVS 29 V=1
Figure 4-11

Conditional Branch Instructions.

The first instruction, Branch If Carry Clear (BCC), monitors the C register.
If the carry register is reset to 0, the branch is implemented. Notice that
the words ‘“‘clear’” and “‘reset” are used interchangeably in this regard.
They both mean the register contains a 0.

The branch instructions that monitor the Z register can also be confusing.
The Branch If Equal Zero (BEQ) instruction implements a branch when
the Z register is set to 1. Recall that the Z register is set to 1 when the
number in the accumulator is zero. Thus, you must remember that a 0 in
the Z register means that the number in the accum_ulator is not zero.

These conditional branch instructions can be used with other instruc-
tions to make a wide range of decisions. They greatly increase the power
of the microprocessor. More than any other type of instruction, the
conditional branches are responsible for the MPU’s ““intelligence.” In the
next section, you will see how these instructions are used.

introduction to Programming

Self-Test Review

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

What is the difference between an unconditional branch instruc-
tion and a conditional branch instruction?

What condition is tested by the branch if minus (BMI) instruction?
When is the N flag set?
When is the Z flag set?
During an add operation, the C flag is set. What does thisrepresent?

During a subtract operation, the C flag is set. What does this indi-
cate?

Often, when two positive 2’s complement numbers are added, the
sign bit of the answer will indicate a negative sum. This “‘error’”’ can
be spotted by checking which flag?

Under what condition will the BEQ instruction cause a branch to
occur?

Under what condition will the BPL instruction cause a branch to
occur?

When subtracting unsigned binary numbers, which flag indicates
that the difference is a negative number?

4-27

4-28

UNIT FOUR

Answers

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

An unconditional branch instruction always causes a branch oper-
ation to occur. On the other hand, the conditional branch instruc-
tion implements a branch operation only if some specified condi-
tion is met.

The BMI instruction tests the Negative (N) register to see if it is set.

Generally speaking, the N flag is set if the previous instruction lefta
1 in the MSB of the accumulator.

Generally, the Z flag is set if the previous instruction left all zeros in
the accumulator.

During an add operation, the carry bit is set if there is a carry from
bit 7 of the accumulator.

During a subtract operation, the carry bit is set if bit 7 had to
“borrow” a bit to complete the subtraction.

This condition results from a two’s complement overflow. Thus,
the V flag will be set if this condition occurs.

The BEQ instruction causes a branch to occur only if the Z register
is set.

The BPL instruction causes a branch to occur only if the N register
is clear.

The carry flag.

CONTINUING Introduction to Programming

ALGORITHMS

An algorithm is a step-by-step procedure for doing a particular job. It
generally involves doing a complex task by stringing together a series of
simple steps. Toillustrate the use of an algorithm, consider the following
very simple example.

Multiplying by Repeated Addition

Most microprocessors do not have hardware multiply capabilities. That
is, they do not have a multiplication circuit nor a multiply instruction.
Nevertheless, the microprocessor can be made to multiply by use of an
algorithm. One procedure for doing this was discussed earlier. It in-
volved adding the multiplicand to itself the number of times indicated by
the multiplier. In the previous example, this was done by using a separate
ADD instruction for each addition. This procedure is unsatisfactory for
two reasons. First, it results in excessively long programs. Second, you
must know the value of the multiplier so that you know how many ADD
instructions to include.

A better approach, although still far from ideal, is to use a program loop
that will multiply two numbers by repeated addition. For the time being,
assume that the two numbers are both positive and that the product does
not exceed 255,,. Let’s further assume that we use only the instructions
which have been discussed up to this point. In fact, we will restrict
ourselves to the instructions shown in Figure 4-12.

ADDRESSING MODE
INSTRUCTION MNEMONIC | IMMEDIATE DIRECT | RELATIVE | INHERENT
Load Accumulator LDA 86 96
Clear Accumulator CLRA 4F
Decrement Accumulator DECA 4A
Increment Accumuiator INCA 4aC
Store Accumulator STA 97
Add ADD 88 98
Subtract SuUB 80 90
Branch Always BRA 20
Branch If Carry Set BCS 25
Branch if BEQ 27
Equal Zero
Branch if Minus BMI 2B
Halt HLT 3E
Figure 4-12

Instructions to be used.

4-29

4-30

UNIT FOUR

HEATHKIT
CONTINUING
EDUCATION

T 1,

Nt

The algorithm for multiplying by repeated addition is quite simple. To
multiply A times B, you merely add A to a specific location B times. For
example, to multiply 5 times 3, you clear a location and then add 5. You
continue the addition until 5 has been added 3 times. The number in the
affected location will then be 15,, which is the product of 5 times 3.

The success of this operation depends on the microprocessor knowing
when to stop. It must add 5 three times, but only three times. One way to
keep track of the number of additions is to decrement the multiplier (3)
each time an addition is made. When the multiplier reaches 0, the proper
number of multiplications has been carried out.

Figure 4-13 is a flow chart that illustrates the algorithm. In the first two
steps, the MPU clears the accumulator and stores the resulting number (0)
in the product. This ensures that the product is zero before the first
number is added. Next, it loads the multiplier and checks to see if the
multiplier is 0. If so, the process is stopped since a multiplier of 0 dictates
a product of 0.

In our example, the multiplier is 3; therefore, we exit the decision block
via the “‘no” line. The next step tells us to decrement the multiplier. The
new value of the multiplier (2) is stored for future use. Next, the product
whose present value is 0 is loaded. Then, the multiplicand (5) is added so
thatthe new value of the product becomes 5. This completes our first pass
through the program. Remember that the multiplicand has been added
once and that the multiplier has been reduced by one.

Notice that the program loops back to the input of the second block. The
product which now has a value of 5 is stored back in memory. The
multiplier (which is now 2) is loaded and tested. Because its value is not
yet 0, the multiplier is decremented to 1 and stored again. The product
(whose value is now 5) is then loaded and the multiplicand is added so
that a new value of 10,, is obtained.

The program loops again and the new product (10,,) is stored. The
multiplier (whose value is now 1) is loaded and tested. Because its value
is still not 0, it is decremented again. Notice that the value of the multip-
lier is now 0. This value is stored away, the product (10,,) is fetched, and
the multiplicand is added once more. The new value of the product
becomes 15,,.

HEATHKIT

Introduction to Programming 4" 31

———]

Clear
Accumulator

Store
Product

|

Load the
Multiplier

Does
Muitiplier

YES

=0?

Oecrement
the
Multiplier

I

Store the
Muitiplier

l

Load the
Product

|

Add the
Muitiplicand

I

Figure 4-13
Flow chart for multiplying by repeated

addition.

The program loops again and the product is stored. The multiplier is
loaded and tested. Recall that the value of the multiplier is now 0.
Consequently, we exit the decision block via the “yes” line. The program
has accomplished its task and it now stops. Notice that the value of the
product is 15, which is the proper answer for 5 x 3.

HEATHKIT
4-32 | uniT Four CONTINUING

e

The next task is to convert the flow chart to a program that the computer
can execute. Figure 4-14 shows such a program. Carefully compare this
program to the flow chart paying particular attention to the comments
column. Work through the program on paper and verify that it will
multiply the numbers at addresses 11,5 and 12,5. Although 3 and 5 are
used in this example, the program will work for any values of multiplier
and multiplicand as long as the product does not exceed 255,,.

HEX HEX MNEMONIC/HEX
ADDRESS CONTENTS CONTENTS COMMENTS

00 4F CLRA . Clear the accumulator.

01 97 = STA Store the product

02 13 13 in location 13.;.

03 96 LCA Load the accumulator with the

04 12 12 multiplier from location 12,5

05 27 BEQ If the multiplier is equal to zerc,

06 09 r—— 09 branch down to the Hait instruction.

07 4A DECA Otherwise, decrement the multiplier.

08 97 STA Store the new value of the

09 12 12 muitiplier back in tocation 12,.

0A 96 LDA Load the accumulator with the

0B 13 13 product from location 13,,.

ocC 98 ADD Add

(¢]0] 1 1 the muitiplicand to the product.
- OE 20 BRA Branch back to instruction

OF F1 F1 in location 01.

10 3 b HLT Hait.

11 05 05 . Multipticand.

12 03 o3 Muitiplier.

13 —_— —_ Product.

Figure 4-14

This program multiplies the numbers
at addresses 11, and 12,4, and places
their product at address 13,,.

Introduction to Programming

Dividing by Repeated Subtraction

Another interesting algorithm is one that allows the microprocessor to
divide by repeated subtraction. The technique is to keep track of the
number of times that the divisor can be subtracted from the dividend. For
example, suppose you wish to divide 47,4 by 15,,. The divisor can be
subtracted 3 times:

First subtraction Second Subtraction Third Subtraction

47, 32, 1710
—-15,, —/‘_1510 /_"—15{0
3210 1710 2

“10

Because three subtractions occurred, the quotient is 3. Also, because 2
was left after the last subtraction, the remainder is 2. We can verify thisby
long division:

3, <« Quotient
divisor — 15,) 47, <« Dividend
4549
2,0 < Remainder

The microprocessor keeps track of the number of subtractions by incre-
menting the quotient by one each time a subtraction occurs. Of course,
the quotient must be initially set to zero.

The divisor is subtracted from the dividend until any further subtraction
would result in a negative number. The MPU can use the BMI instruction
to check for a negative result on each loop. The negative result is the
indication that the process is finished.

4-33

4-34

UNIT FOUR

HEATHKIT

CONTINUING
EDUCATION

Nt

A flow chart for this algorithm is shown in Figure 4-15. The actual
program is shown in Figure 4-16. The program is arbitrarily placed in
locations 00 through 10,,. The dividend (47,,) is at address 11,5 while the
divisor(15,) is at address 12,,. When executed, the program will produce
the quotient at location 13,5 and the remainder at location 11.

Clear
Accumulator

—_’L

Store
Quotient

|

Load
Dividend

l

Subtract
Divisor

i3
resuit N YES

Store
Dividend

|

Locad
Quotient

Increment
Quotient

L

Figure 4-15
Fiow chart for dividing by repeated
subtraction.

HEATHKIT
CONTINUING i Programmin 4" 3
EDUCATION Introduction to Programming 5
e
HEX HEX MNEMONIC/HEX
ADDRESS CONTENTS CONTENTS COMMENTS
00 4F CLRA Clear the accumulator.
01 97 - STA Store in the quotient which
02 13 13 18 at address location 13,
o3 95 LDA Load the accumulator with the
04 1" 1" dividend from location 11,,.
05 aC suB Subtract the
06 12 12 divisor from the dividend.
07) 28 BMI if the difference is negative, branch
08 07 97 down to the Hait instruction.
09 97 STA Otherwise. store the difference
0A 11 11 back in location 11,5,
08 96 LDA Load the accumulator with the
oC 13 13 quotient.
oD 4C INCA Increment the quotient by one.
0E 20 BRA Branch back to instruction
OF F1 F1 in location 01.
10 3E L LT Halt.
1 2F 2F Dividend (47).
12 oF oF Divisor (15,4).
13 —_ —_ Quotient.

@ Figure 4-16

This program divides by
repeatedly subtracting the
divisor from the dividend.

-

Refer to the flow chart and the comments column of the program. Before
reading further, try running through the program on paper. This will give
you a feel for how the computer solves the problem.

Now let’s go through the program to see what it does. The first two
instructions clear the quotient. Next, the dividend (47,,) is loaded into the
accumulator and the divisor (15,,) is subtracted. The BMI instruction is
used to examine the difference (32,,). Since the difference is not minus,
the branch does not occur. Consequently, the next instruction stores the
difference (32,,) back in the location from which the dividend came. In
effect, the difference becomes the new dividend. Next the quotient (0} is
loaded and is incremented to 1. The program then branches back to the
instruction in location 01. This instruction stores the quotient (1) back in
location 13.

4-36

UNIT FOUR

HEATHKIT

On the next pass through the program, the new dividend (32,,) is loaded
and the divisor (15,,) is subtracted again. This produces a difference of
(17,0). Since the difference is not negative, the BMI instruction does not
cause a branch. Thus, the difference is stored back in location 11,5 The
quotient is loaded into the accumulator and is incremented to 2. The BRA
instruction causes the program to loop once again. The STA instruction
in location 01 stores the quotient (2) back in location 13,.

On the third pass the dividend (17,,) is loaded and the divisor (15,,) is
subtracted a third time. The difference (02) is still not negative so no
branch occurs. The difference is stored away; the quotient is loaded and is
incremented to 03. Notice that this is the proper final value for the
quotient. Therefore, on the next pass, the MPU should be able to break out
of the loop.

The quotient is stored back in location 13 4. The dividend, which now has
avalue of 2, is loaded. The divisor (15,,) is subtracted, leaving a negative
number (—13) in the accumulator. The BMI instruction recognizes that
this is a negative number and implements a branch operation. Notice that
the MPU branches forward to the HLT instruction. Thus, the program
ends with the quotient set to 3. The remainder is at address 11,4 That is,
theremainder is what remains of the dividend after the third subtraction.

It may bother you that there were four subtractions and that a negative
difference resulted from the last subtraction. However, you will recall
that the quotient was incremented only on the first three of these subtrac-
tions. Thus, the final quotient is 3. Moreover, the negative difference that
resulted during the last subtraction was never stored. Consequently, the
remainder was 2 when the program ended.

This program does have some drawbacks. For one thing, neither the
dividend nor the divisor can exceed 127,,. Also, only positive numbers
can be used. Finally, the program gets hung up in an endless loop if the
initial value of the divisor is zero. While division by zero is not allowed in
mathematics, some provisien would be made in a practical program to
recognize this eventuality. Since the program is for demonstration pur-
poses, we will live with these shortcomings for the time being.

Introduction to Programming] 4-37

Converting BCD to Binary

When a microprocessor is used with a terminal such as a teletypewriter,
numerals are entered as ASCII characters. For example, the number 237,,
is entered into memory as three ASCII characters:

Numeral ASCII Character
2 0011 0010
3 0011 0011
7 0011 0111

Notice that the four least significant bits of the ASCII character represent
the BCD value of the corresponding numeral. Thus, we can convert these
ASCII characters to BCD numbers simply by eliminating the four most
significant bits. This technique was demonstrated in an earlier experi-
ment.

While the microprocessor does have some BCD capability, it is often
desirable to convert BCD numbers to binary. The technique for doing this
illustrates another useful algorithm.

The BCD representation for 237, is:

0010 « hundreds BCD digit
0011 « tens BCD digit
0111 <« units BCD digit

Notice that in this example 0010 represents two hundred, 0011 repre-
sents thirty, and 0111 represents seven. Because of this, there is a simple
procedure for converting BCD to binary. Starting with an initial value of
zero, the MPU adds 100,, as many times as indicated by the hundreds
digit. It then adds 10, as indicated by the tens digit. Finally, the value of
the units digit isadded on to the result. The steps involved look like this:

1100100, 100, One hundred added
1100100, 100, 2 times
1010, 104,
1010, 10, } Ten added three times
1010, 10,,
0111, 7 10 7 units added

11101101, = 237y

As you can see, this procedure ends with a binary result of 1110 1101,
which is the binary representation for 237 .

4-38

UNIT FOUR

HEATHKIT
CONTINUING
_Ebuca

Clear Binary
Resuit

——>

Load Hundreds
Digit

is
it zero

NO

YES

= — "

A flow chart for this procedure is shown in Figure 4-17. Here, the first
step isto clear the binary result. We will be adding to thisresult, so it must
start out at zero.

Next the program enters a loop in which it adds 100,, to the binary result
the number of times indicated by the hundreds digit of the BCD number.
The hundreds digit is loaded and tested for zero. If it is not zero, the
hundreds digit is decremented and stored back in memory. Then the
binary result is loaded and 100,, is added. The result is stored away and
the loop is repeated. In our example, the hundreds digit was initially 2.
Thus, this loop is repeated twice. The binary result will have the value
1100 1000, (200,,) when the hundreds digit is reduced to zero. At that
time, the program exits the decision block via the “yes” line and im-
mediately encounters a second loop.

The second loop is exactly like the first except that 10,, is added to the
binary result each time the tens digit of the BCD number is decremented.
Because the tens digit was initially 3, this loop is repeated three times.
Ten is added to the binary result three times, bringing the result to
1110 0110,(230,,). The program exits this loop via the “yes’ line on the
pass after the tens digit is reduced to zero. -

Decrement
Hundreds
digit

Store
Hundreds
digit

Load Binary
Resuit

|

Add 100,

l

Store Binary
Resuit

|

Figure 4-17
Flow chart for converting
BCD to binary.

——

Load Tens
digit
Is
it zero YES
?
NO Load Binary
Resuit
Decrement
tens digit [
l Add units
digit
Store tens
digit [
I Store Binary
Resuit
Load Binary
Resuit
1
Add 10,,
Store Binary
Resuit
]
i i

HEATHKIT
CONTINUING
_EDUCATION

Introduction to Programming

The final three blocks add the units digit to the binary result. In our
example, the units digit was 7,,. This brings the final binary result to
1110 1101,. Notice that this is the proper binary representation for the
unsigned number 237 .

A program that carries out this operation is shown in Figure 4-18. The
three digit BCD number is stored in locations 28,4, 29,6, and 2A .. The
binary equivalent will be computed and placed in location 2B,4. Before
reading further, try to work through the program. Refer to the flow chart
and the comments column as you trace out the sequence that the MPU
will follow.

- HEX HEX MNEMONIC/HEX COMMENTS
ADDRESS CONTENTS CONTENTS
00 4F Clear the accumuiator
01 97 Store 00
02 2B in location 2B. This clears the binary result.
03 96 Load arrect
04 28 the hundreds BCD digit.
05 27 If the hundreds digit is zero. branch
06 08 forwarg to the instruction in location 12,
07 4A Otherwise. decrement the accumulator.
08 97 Store the resuit as the new
09 28 hunareas BCD digi.
CA 96 Load airect
0B 2B the binary result.
oC 8B Add immediate
[¢]0] 64 100., to the binary resuit.
OE 97 Store away the new
OF 2B binary resuit.
10 20 Branch
11 F1 back to the instruction :n location 03...
12 96 Load direct
13 29 the tens BCD digit.
14 27 If the tens BCD aigit is zero. branch
15 oB iorward to the instruction in focation 21...
16 4A Otherwise. decrement the accumulator.
17 97 Store the result as the new
18 29 tens BCD digit.
19 96 Load direct
1A 28 2 the binary result.
1B 88 Add immediate
1C 0A 10,, to the binary result.
1D 97 Store away the new
iE 2B binary resuit.
1F 20 Branch
20 F1 back to the instruction in location 12...
21 96 Load direct
22 2B the binary result.
23 9B Add direct
24 2A the units BCD aigit.
25 97 Store away the new
26 2B binary resuit
27 3E Hait.
28 02 Hundreds BCD digit.
29 03 Tens BCD digit.
2A 07 Unit BCD digit.
2B - - Reserved for the binary resuit.

Figure 4-18
Program for converting BCD to binary.

4-39

4-40 lUNIT FOUR

Now let’s briefly go through the program. The first two instructions clear
the location at which the binary number will be formed.

Next, the program enters the first loop, which is shown as the first shaded
area. In this loop, the hundreds digit is loaded and tested for zero. If not
zero, it is decremented and stored away. Then the binary result is loaded
and 100, is added. The result is stored away and the loop is repeated.
Because the hundreds digit was 02 initially, 100,, will be added to the
binary result twice. Thus, upon leaving this loop, the binary result will
have the value 200,,. The MPU escapes this loop when the BEQ instruc-
tion at address 05 detects that the hundreds digit has been reduced to
zero. The branch is to the second loop which is shown as an unshaded
area.

In the second loop, the tens digit is loaded and tested for zero. If not zero,
it is decremented and stored away. Then the binary number is loaded,
10,0 is added, and theresult is stored away. This loop is repeated until the
tens digit is reduced to zero. Because the tens digit was initially three, the
loop is repeated three times so that thirty is added to the binary number.
The BEQ instruction at address 14,5 allows the MPU to escape the loop
and branch to the final program segment.

This final segment is the last shaded area. Here, the binary result is loaded
and the units digit is added. This brings the binary result to 237,,. Then
the result is stored and the program halts. While the number 237,, was
used in this example, the program will convert any BCD number between
000 and 255,, to its binary equivalent.

———
HEATHKIT
CONTINUING

EDUCATION

Introduction to Programming

Converting Binary to BCD

A microprocessor generally manipulates data in the form of straight
binary numbers. However, before the results can be transmitted to the
outside world, the data is often converted back to BCD. Frequently, this is
an intermediate step in converting back to ASCII.

The binary-to-BCD conversion is the reverse of the process that occurred
in the previous program. The MPU must determine how many times
100,, can be subtracted from the binary number. The answer becomes the
hundreds BCD digit. After the 100,, has been subtracted as many times as
possible, 10,, is subtracted repeatedly from the remaining number. The
number of subtractions becomes the tens BCD digit. Finally, after 10,, has
been subtracted as many times as possible, the remaining number be-
comes the units BCD digit.

For the number 1110 1101, (237,,), the process looks likes this:

1110 1101 237
—-0110__ 0100 -100

1000 1001 137>hundreds digit = 2
—-0110 0100 -100

0010 0101 37

—0000__1010 - 10

0001 1011 27 tens digit = 3
—-0000 1010 - 10

0001 0001 17

—0000 1010 - 10

0000 0111 7 <—aunits digit = 7

One hundred can be subtracted twice. Thus, the hundreds digit is 2,, or
0010,. From the remainder, ten can be subtracted three times. Thus, the
tens digit is 3, or 0011,. Finally, the remainder of 7,, or 0111, becomes
the units digit. The BCD representation is 0010 0011 0111.

4-41

4-42

HEATHKIT

CONTINUING
UNIT FouR _EDUCATION_
Figure 4-19 shows the flow chart for this procedure. The first three blocks
clear the hundreds, tens, and units digits of the BCD result. Then the
binary number that is to be converted to BCD is loaded and 100,, is
subtracted. The outcome is tested to see if a negative number resulted. If
g
not, the result is stored away. The hundreds digit is loaded, incremented,
and stored away. The loop is repeated until 100,, can no longer be
y p
subtracted. In our example, 100,, can be subtracted twice. Therefore, the
Clear p
Hundreds hundreds digit is incremented to 2. The third subtraction of 100,, gives a
m?" negative result. This allows the MPU to escape the first loop.
Clear
it The second loop increments the tens digit to the proper value by subtract-
I ing 10,, repeatedly and keeping track of the number of subtractions. In
Clear our example, this loop is repeated three times. Consequently, the tens
Units p q
Digit digit is incremented to 3. The binary number that is left over after 10,, is
> subtracted the proper number of times becomes the units digit. That is,
Load Binary . s e . . .
Number upon escaping the second loop, the remaining binary number is stored in
T the units digit. In our example, the remaining number, and therefore the
Subtract units digit, is 7.
100,
|
Load Binary
Number
Store Binary [
Number
l Subtract
10,
Load Hundreds
Digit
]
Increment
Hum'.!redst 1
Digit
T NO Lo;d e::ry
Hunareds e]
Digit
[Store in
I Units Digit
Load Tens
Digit
|
"'ICTfImEn‘
Digit
]
Store Tens
Digit

L

Figure 4-19
Flow chart for converting a binary
number to a BCD number.

Introduction to Programming

The program that carries out this procedure is shown in Figure 4-20. At
this point, you should be able to interpret the program from the com-
ments given. However, a couple of points should be explained briefly.
Any unsigned binary number from 0000 0000 to 1111 1111 can be
placed at address 2A ;. The computer will convert this number into its
BCD equivalent. The hundreds digit will appear at address 2B, the tens
digit at 2C¢, and the units digit at 2D . The decision making instructions
at addresses 0B, and 1A are Branch. if Carry Set (BCS) instructions.
Because these instructions follow immediately after SUB instructions,
the carry flag will indicate whether or not a borrow occurred. In effect, the
BCS instructions decide: “Was the result of the subtraction a negative
number?”’

HEX HEX MNEMONIC/HEX
ADDRESS | CONTENTS CONTENTS COMMENTS
00 4F CLRA Clear the accumuilator.
01 97 STA Store 00
02 28 2B in location 2B,,. This clears the hundreds digit.
03 97 STA Store 00
04 2C 2C in location 2C,,. This clears the tens digit.
05 97 STA Store 00
06 2D 2D in location 2D,,. This clears the units digit.
07 96 LDA Load direct
08 2A 2A the binary number to be converted.
09 80 suB Subtract immediate
0A 64 64 100.,.
08 25 B8Cs it a borrow occurred. branch
oC 09 09 forward to the instruction in location 16,.
oD 97 STA Otherwise. store the resuit of the subtraction
OE 2A 2A as the new binary number.
oF 96 LDA Load direct
10 2B 28 the hundreds digit of the 8CD resuit.
11 4C INCA Increment the hundreds digit.
12 97 STA Store the hundreds digit
13 28 28 back where it came from.
14 20 BRA Branch
15 F1 F1 " Jback to the instruction at address 97:s
16 96 LDA Load airect
17 2A 2A the binary number.
18 80 suB Subtract immediate
19 0A 0A 10,
1A 25 BCS it a borrow occurred. branch
1B 09 09 forward to the instruction in location 25,,.
1C 97 STA Otherwise. store the resuit of the subtraction
1D 2A 2A as the new binary number.
1€ 96 LDA Load direct
1F 2C 2C the tens digit.
20 4c INCA Increment the tens digit.
21 97 STA Store the tens digit
22 2C 2C back where it came from.
23 20 BRA Branch
24 Fi F1 back to the instruction at address 16.,.
25 96 LDA Load direct
26 2A 2A the binary number.
27 97 STA Store it in
28 2D 20 the units digit.
29 3E HLT Halt.
2A - —_ Place binary number to be converted at this address.
2B - — Hundreds digit
2C — - Tens digit Reserved for
20 - - Units digit BCD resuit.
Figure 4-20

Program for converting a binary
number to a BCD number.

4-43

4-44

UNIT FOUR

HEATHKIT
CONTINUING
EDUCATION

i

Self-Test Review

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

What is an algorithm?

What type of instruction is used to make a decision?

Refer to the program in Figure 4-14. If the multiplier is 8,5 and the
multiplicand is 15,5, how many times will the BEQ instruction be

executed?

Refer to the program in Figure 4-16. What is the largest number that
can be used as a dividend?

How could this program be modified so it could handle unsigned
dividends up to 255,,?

When this program halts, where will the remainder be located?
Refer to the program in Figure 4-18. Assume that addresses 28,
29,4, and 2A 4 contain 01, 09, and 08 respectively. How many times
will 100,, be added to address 2B,4?

How many times will 10,, be added?

Refer to the program in Figure 4-20. What is the purpose of the first
four instructions?

What is the largest binary number that this program can convert to
BCD?

HEATHKIT
CONTINUING
EDUCATION _

e e

Introduction to Programming | 4-45

Answers

20. Analgorithm is a step-by-step procedure for doing a particular job.
21. Conditional branch instruction.

22. Nine times.

23. 4127, or 0111 1111,.

24. Change the BMI instruction to BCS.

25. At address 11.

26. Once.

27. Nine times.

28. The first four instructions clear the locations where the BCD equi-
valent will be stored.

29. 1111 1111, or 255,

4-46

HEATHKIT

CONTIRUING
UNIT FOUR EWS_‘#“
ADDITIONAL INSTRUCTIONS
Before leaving this unit, you should also look at four additional instruc-
tions. The names, opcodes and mnemonics of these instructions are
shown in Figure 4-21.
HEX OPCODE
NAME MNEMONIC ; IMMEDIATE | DIRECT | INHERENT
ADD WITH CARRY ADC 89 99
SUBTRACT WITH CARRY SBC 82 92
ARITHMETIC SHIFT ACCUMULATOR LEFT ASLA 48
.DECIMAL ADJUST ACCUMULATOR DAA 19
Figure 4-21

Four new instructions.

Recall that the ALU always adds numbers as if they were unsigned binary
numbers. When it adds 8-bit numbers, a carry often occurs from the MSB,
setting the C flag. Thus, you can think of the carry flag as an extension of
the accumulator. Let’s look at some instructions that use the carry flag.

Add With Carry (ADC) Instruction

This instruction is similar to the ADD instruction discussed earlier with
one important difference. If the carry bit is set to 1 before this instruction
is executed, 1 is added to the LSB of the sum. However, if the carry bit is 0
prior to execution, then no carry is added. The effect is the same as having
the carry bit from the previous operation added to the result of the present
operation.

Like the ADD instruction, the ADC instruction has two addressing
modes: immediate and direct. As shown in Figure 4-21, the opcode for
“ADD With Carry Immediate” is 89,4, while the opcode for “Add With
Carry Direct” is 99,.

—_——
HEATHKIT | |
CONTINUING Introduction to Programming 4-47
EDUCATION

A primary use of the ADC instruction is to simplify multiple-precision
arithmetic. Multiple-precision means that two or more bytes are used to
represent a number. Recall that a single byte can represent unsigned
binary numbers with values up to 255,,. However, much larger numbers
can be represented by using two or more bytes. Two bytes (16 bits) can
represent unsigned binary values up to 2'—1 or 65,535,,. Three bytes can
represent values to 16,777,215,; etc. Thus, the MPU can handle numbers
of virtually any size simply by stringing the proper number of bytes
together.

Suppose, for example, that two very large numbers are to be added.
Figure 4-22 shows how the addition might look on paper. Notice that two
24-bit numbers are being added to form a 24-bit sum. The MPU is re-
stricted to operating on data in 8-bit bytes. Thus, each quantity involved
must be represented by three bytes.

V
11" | 11 | 1 — Carries
0100 1010 | 1100 0000 | 1110 1010 — Addend
— - 0110 0110 3 0001 1011 1 10010011 — Augend
) 1011 0000 ; 1101 1100 - i 0111 1101 « Sum
Byte 3 | Byte 2 ' Byte 1
Figure 4-22

Multiple-precision addition.

The MPU must be instructed to add the first byte of the addend to the first

byte of the augend. This forms the first byte of the sum. Next the MPU
_ must add the second bytes of the addend and augend. However, you will

notice that there was a carry from the first byte to the second byte. If this

carry is not added with the second bytes, the sum will be in error. The
_ ADC instruction performs this operation automatically.

4-48

HEATHKIT

CONTINUING
EDUCATION

Page 4-48

Reserved
for sum.

The program for adding the multiple-byte numbers could be written as
shown in Figure 4-23. The three byte addend is stored in locations 134
through 15,; while the augend is stored in locations 16, through 184.
Verify that the hexadecimal contents shown are the same as the binary
values given in Figure 4-22.

HEX HEX MNEMONIC/HEX COMMENTS
ADDRESS CONTENTS CONTENTS
00 26 LDA Load accumulator direct with
01 13 13 least significant byte of addend.
02 98 ADD Add direct
03 16 16 least significant byte of augend.
04 97 STA Store result in
05 19 19 least significant byte of sum.
06 96 LDA Load accumulator direct with
07 14 14 next byte of adgdend.
4] 99 ADC Add with carry direct
09 17 17 next byte of augend.
0A 97 STA Store result in
08 1A 1A next byte of sum.
oc 96 LDA Load accumulator direct with
oD 15 15 most significant byte of addend.
0E 99 ADC Add with carry direct
OF 18 18 most significant byte of augend.
10 97 STA Store resuit in
1 18 18 most significant byte of sum.
12 3E HLT Hait.
13 EA EA Least significant bytel
14 co Cco Addend.
15 4A 4A Most significant byte l
16 93] Least significant byte
17 18 18 } Augent
18 66 66 Most significant byte
19 - - Least sigmficant byte
1A —_ _ } Reserved
18 — - Most significant byte. |~ for sum-
Figure 4-23
Program for multiple-precision
addition.

The first two instructions add the least significant bytes of the addend
and augend. The ADD instruction is used because the MPU need not
consider earlier carries. The first byte of the resulting sum is stored in
location 19.

The next two instructions add the next two bytes. This time the ADC
instruction is used because the MPU must consider the carry from the
previous addition. The second byte of the sum is placed in location 1A .

Finally, the last two bytes are added using the ADC instruction. The final
byte of the sum is stored in location 1B,s. The program halts when the
addition is completed.

HEATHKIT
CONTINUING

Introduction to Programming

Subtract With Carry (SBC) Instruction

This instruction simplifies multiple-precision subtraction. You will re-
call that during subtract operations the carry flag indicates whether or not
a borrow operation occurred. For this reason, this instruction can be
thought of as a subtract with borrow operation.

The SBC instruction subtracts the subtrahend from the minuend just as
the SUB instruction did. However, the SBC instruction has an additional
step in that the carry bit is also subtracted. As with the other add and
subtract instructions, both immediate and direct addressing modes are
possible. The opcodes for both modes are shown in Figure 4-21.

Figure 4-24 illustrates how multiple-precision numbers can be sub-
tracted. Notice that, during the course of this subtraction, byte 1 must
“borrow” a 1 from byte 2. The SBC instruction allows the MPU to do this.

i
11 1 Borrows
1001 0111 0010 0001 « Minuend
- 0111 0101 1000 0001 <« Subtrahend

l
|
3
0010 0001 i 1010 0000 « Difference
|

Byte 2 Byte 1

Figure 4-24
Multiple-precision subtraction.

4-49

4-50 UNIT FOUR

HEX HEX MNEMONIC/HEX
ADDRESS CONTENTS CONTENTS COMMENTS
00 96 LDA Load accumulator direct with
01 o] 8 0D least significant byte of minuend.
02 90 suB Subtract direct
03 OoF oF least significant byte of subtrahend.
04 97 STA Store result in
05 11 11 ieast significant byte of difference.
06 96 LDA Load accumulator direct with
07 0E 0E most significant byte ot minuend.
08 92 SBC Subtract with carry
09 10 10 most significant byte of the subtrahend.
0A 97 STA Store result in
08 12 12 most significant byte of the difference.
ocC 3E HLT Hait
oD 21 21 Least significant byte} .
0E 97 97 Most significant byte | Minuend.
oF 81 81 Least significant byte } :
10 75 75 Most significant byte | Subtrahend.
1" - - Least significant byte } .
12 - - Most significant byte Ditference.
Figure 4-25
Program for multiple-precision
subtraction.

Figure 4-25 shows a simple program for performing the subtraction. The
double-precision minuend is at addresses 0D, and OE,s, while the sub-
trahend is at addresses OF 4 and 10,¢. The program computes the differ-
ence and stores it in locations 11,5 and 12 .

The first instruction loads the least significant byte of the minuend. Next,
the corresponding byte of the subtrahend is subtracted. Since the sub-
trahend byte is larger, a borrow is indicated. Consequently, the carry flag
is set to 1. Notice that the SUB rather than the SBC instruction is used.
This is done because the first byte should not be affected by any previous
borrow or carry. Theresult of the subtraction is stored away to become the
least significant byte of the difference.

The most significant byte of the minuend is loaded next and the corre-
sponding byte of the subtrahend is subtracted. However, this time the
SBC instruction is used. And since the carry flag is set, an additional 1 is
subtracted from the minuend io complete the borrow operation. The
result of the subtraction becomes the most significant byte of the differ-
ence.

Introduction to Programming

Arithmetic Shift Accumulator
Left (ASLA) Instruction

The ASLA instruction shifts the contents of the accumulator to the left by
one space. Figure 4-26 illustrates the repeated execution of this instruc-
tion. Figure 4-26A shows the condition of the accumulator and carry bit.
In this example, the number in the accumulator is arbitrarily assumed to
be 10,,. Also, the carry bit is arbitrarily assumed to be cleared.

CARRY
REGISTER ACCUMULATOR

)
(SRlelol ol

’ (T 77T 777

0 -=-[0[{0]0j0[1]0[1]0]

/ / e ?
CARRY 81T ZERO SHIFTED

SHIFTED OUT 458 SHIFTED

AND LOST INTO CARRY BIT INTO LS8

L L LS
(61) (Slor fol Tololol)
<4
AV AA A A AV,
(51) (b Tol Talalolal)
<4

@ L L L L Ll L7

(o 1Tofolofofo])
4=

A AeAeN,
(1) el Teleolofolo)
<=

SHIFTED OUT
AND LOST

EEEERES

@ (L L LL L L L7

Figure 4-26

A
BEFORE SHIFT

8
AFTER FIRST SHIFT

C
AFTER SECOND SHIFT

D
AFTER THIRD SHIFT

E
AFTER FOURTH SHIFT

E
AFTER FIFTH SHIFT

G
AFTER SIXTH SHIFT

Repeatedly implementing the ASLA

instruction.

4-51

4-52

UNIT FOUR

HEATHKIT
CONTINUING
_EDUCATION

Figure 4-26B shows the contents of the accumulator and carry bit after the
ASLA instruction is executed. Notice that the number is shifted one bit to
the left. Also, a 0 is shifted into the LSB. At the same time, the MSB is
shifted into the carry bit. The old carry bit is shifted out and is lost.

You can understand one purpose of this instruction by examining the
numbers in the accumulator before and after the instruction is executed.
Before the shift, the number is 10,,; afterwards the number is 20,,. The
number has been doubled. If you will try several different examples, you
will see that any binary number can be multiplied by two simply by
shifting the number one bit to the left. This holds true as long as the
capacity of the accumulator is not exceeded.

Figures 4-26C through G show what happens if the MPU continues to
execute ASLA instructions. The number continues to double. The
number in the accumulator becomes 40,,, then 80,,, then 160,,. Each shift
multiplies the number by two. On the fifth shift, the capacity of the
accumulator is exceeded as the most significant 1 bit shifts into the carry
bit. After the sixth shift, the leading 1 is lost altogether. When you use this
technique to multiply by two or by a power of two, you must not exceed
the capacity of the accumulator.

Another use of the ASLA instruction is to pack two BCD digits in a single
byte. Earlier when we worked with BCD numbers, we assumed that each
BCD digit resided in a separate memory byte. However, because a BCD
digit has only 4 bits, memory space is wasted by assigning each digit a
separate byte. Frequently, it is more desirable to ‘“pack’ two BCD digits
into a single byte. A simple routine for doing this is shown in Figure 4-27.
If dozens of BCD numbers are to be manipulated, a routine that uses a
procedure similar to this can save substantial memory space. At the same
time, it puts the BCD numkbers into a more convenient and usable form.

HEX HEX MNEMONICS/HEX
ADDRESS | CONTENTS CONTENTS COMMENTS
00 96 LOA Load into the accumuiator direct
01 eC ocC the unpacked most significant BCD digit.
02 48 ASLA
03 48 ASLA] Shift «t four places to
04 48 ASLA I the left.
05 48 ASLA
06 9B ADD Add
07 D 00 the unpacked least significant BCD digit.
08 97 STA Store the resuit as
09 08 o two packed BCD digits.
0A 3E HLT Hait .
o — — Packed BCD digits.
ocC - —_ Most significant BCD digit (unpackea).
oD - . Least significant BCD digit {unpacked).

rigure 4-27
Program for packing two
BCD digits into a single byte.

Introauction to Programming | 4-53

The procedure carried out by the program is quite simple. The most
significant BCD digit is loaded into the accumulator. It is then shifted
four places to the left to make room for the least significant BCD digit. The
least significant digit is then added to form a packed BCD number. The
resulting single byte number is stored back in memory.

Decimal Adjust Accumulator (DAA) Instruction

Earlier in this unit, the problems of converting from BCD to binary and
back again were considered. While this conversion is frequently neces-
sary, many microprocessors have some limited BCD arithmetic
capabilities. Our hypothetical MPU has an instruction that greatly
simplifies BCD arithmetic. It is called the Decimal Adjust Accumulator
(DAA) Instruction. When used in conjunction with the ADD or ADC
instruction, it allows the MPU to add BCD numbers directly without an
intermediate binary conversion.

Recall that the ALU adds input data bytes as if they were unsigned binary
numbers. Therefore, if two BCD digits are added, the sum may be incor-
rect. For example, assume that the MPU adds the BCD digits 0111 and
0101. The ALU produces the result

1
0111
+ 0101

1100

This answer is the correct binary result, 12,,; but it is not the proper BCD
result. Recall that in BCD, 12,, is represented as 0001 0010. Notice that
you can obtain the proper BCD result by adding 0110, to the binary result.
The addition of 0110, is necessary anytime that the binary result exceeds
1001,.

To produce the proper BCD result when adding two BCD digits, the MPU
must follow this procedure:

1. If the sum is 1001, or less, use the sum as the single digit BCD
result.

2. Ifthesum is greater than 1001,, add 0110, and use the result as
a 2-digit BCD number.

4-54 l UNIT FOUR

HEATHKIT
CONTINUING

The situation becomes more complex when packed BCD numbers are
added. Consider adding 0111 1001¢p (799) to 80111 0011p¢p (7340).
The ALU adds these packed BCD numbers as if they were unsigned
binary numbers. The result is

11 1
0111 1001
0111 0011
1110 1100

Notice that the result is not a BCD number, since both 4-bit groups exceed
1001,. Even so, the sum can be converted to BCD by adding 0110, to each
4-bit group. The result is

1 11 1
1110 1100
0110 0110

1 0101 0010

There is a carry from bit 7 that sets the carry bit. This carry bit becomes the
most significant BCD digit. Thus, the final BCD result is
0001 0101 0010z Or 152,

If you consider all possible combinations of BCD numbers, you will find
that four different situations exist:

1. When some BCD numbers are added, the binary result pro-
duced by the ALU is equal to the proper BCD representation.
This occurs when both BCD digits of the result are 1001, or less.

2. The binary sum is adjusted by adding 06,4 if the least signif-
icant BCD digit exceeds 1001, but the most significant BCD
digit does not. ’

3. The binary sum is adjusted by adding 60, if the most signifi-
cant BCD digit exceeds 1001, but the least significant BCD digit
does not.

4. The binary sum is adjusted by adding 66,4 if both BCD digits
exceed 1001,.

While this procedure could be programmed, it would be much better if
the MPU performed these operations automatically. Fortunately, our
hypothetical microprocessor does this. The programmer simply informs

HEATHKIT
CONTINUING

EDUCATION
=

introduction to Programming J 4-55

the MPU that the numbers being added are BCD numbers. The MPU
automatically computes the proper BCD result. The way the programmer
informs the MPU is via the DAA instruction. When the DAA instruction
is placed immediately after an ADD or ADC instruction, the MPU au-
tomatically converts the sum to the proper BCD number.

Suppose, for example, that you wish to add two BCD numbers. Assume
the numbers are 3792,,and 5482 ,,. Naturally, the sum should be 9274,,. A
program for solving this problem is shown in Figure 4-28. The BCD
addend (3792,,) is in addresses OF ;¢ and 10, The augend (5482,,) is in
locations 11,5 and 12 . The BCD sum will be placed in locations 13,5 and
14,

HEX HEX MNEMONICS/HEX
ADDRESS | CONTENTS CONTENTS COMMENTS
00 96 LDA Load into the accumulator direct
01 10 10 the least significant half of the addend.
02 9B ADD Add
03 12 12 the least significant haif of the augend.
04 19 DAA Decimal adjust the sum to BCD.
05 97 STA Store the result as the
06 14 14 least significant half of the sum.
07 96 LDA Load
08 OF OF the most significant haff of the addend.
09 99 ADC Add)
0A 11 1 the most significant half of the augend.
08 19 DAA Decimal adjust the sum to BCD.
oC 97 STA Store the result as the
oD 13 13 most significant haif of the sum.
OE 3E HLT MHait
oF 37 37 } BCD Addend
10 92 92
11 54 54
12 a2 82 } BCD Augend.
:3 - - } Reserved for BCD sum.

The first two instructions add the least significant halves of the addend
and augend. The ADD instruction is followed immediately by the DAA
instruction. Therefore, the sum is adjusted to a packed BCD number. The
result is stored in location 14,4 as the lower half of the BCD sum.

Next, the upper halves of the addend and augend are added. This time,
the ADC instruction is used because the carry from the previous addition
must be added in. Again, the DAA instruction adjusts the sum to BCD.
The result is stored as the upper half of the BCD sum.

The DAA instruction must be used properly. It can be used only with
addition. Also, it must be used immediately after the addition instruc-
tion. It can not be used to convert just any binary number to BCD. It only
converts the sum of BCD numbers to the BCD format.

Figure 4-28
Program for adding
multiple-precision BCD numbers.

4-56

UNIT FOUR

HEATHKIT
CONTINUING
EDUCATION

Self-Test Review

30.

31.

32.

33.

34.

35.

36.

37.

How is the ADC instruction different from the ADD instruction?
How is the SBC instruction different from the SUB instruction?

A primary use of the ADC and SBC instructions is in
- arithmetic.

The accumulator contains the number 7,,. Iff two ASLA instructions
are executed, what number will be in the accumulator?

What is the difference between packed and unpacked BCD num-
bers?

When adding unpacked BCD numbers, under what condition must
0110, be added to the sum in order to form a BCD sum?

What instruction is used to automatically adjust the sum to the
proper BCD format when two BCD numbers are added?

Can the DAA instruction be used after a SUB instruction to produce
the proper BCD difference when two BCD numbers are subtracted?

Introduction to Programming

Answers

30.

31.

32.

33.

34.

35.

36.

37.

When the ADC instruction is executed, an additional 1 is added to
the sum if the carry flag is set.

When the SBC instruction is executed, an additional 1 is subtracted
from the difference if the carry flag is set.

Multiple-precision.

The first ASLA instruction multiplies the number by two, giving
14,,. The second ASLA doubles this number, giving 28,,.

With packed BCD numbers, each byte contains two BCD digits.
With unpacked BCD numbers, each byte contains one BCD digit.

When two BCD digits are added, 0110, must be added to the sum if
the sum exceeds 1001,.

The decimal adjust accumulator (DAA) instruction.

No. The DAA instruction is used in conjunction with add instruc-
tions only.

4-57

4-58 l UNIT FOUR

HEATHKIT
CONTINUING
EDUCA

e e

EXPERIMENTS

Perform Programming Experiments 5 and 6. You will find these experi-
ments in Unit 9. After you finish these experiments, return to this unit
and complete the Unit Examination.

—

Introduction to Programming 4‘59

UNIT EXAMINATION

1. The BRA instruction will cause a branch to occur:
A. Anytime that it is executed.
B. Only if the Z flag is set.
C. Only if the N flag is set.
D. Only if the C flag is set.
2. The address that follows the opcode of an unconditional branch

instruction is:

A. The address of the operand.
B. The address of the next opcode to be executed.
C. Added to the program count to form the address of the next
opcode to be executed.
D. Added tothe program count to form the address of the operand
that is to be tested to see if a branch operation is required.
3. The opcode for an unconditional branch instruction is at address

AF . The relative address is OF ;. From what address will the next
opcode be fetched?

A. A0
B. COy.
C. BE.
D. Bl
4. The opcode for an unconditional branch instruction is at address

30,¢. The relative address is EF,s. From what address will the next
opcode be fetched?

A.

B.
C.
D

2156
EF ;.
32,6
19,,.

5. The carry register:

A
B.
C
D

Acts like the ninth bit of the accumulator.

Is set when a “borrow” for bit 7 of the accumulator occurs.
Is set when a carry from bit 7 occurs.

All the above.

4-60

UNIT FOUR

10.

The numbers 0101 1000, and 0110 0011, are added using the
ADD instruction. Immediately after the ADD instruction is exe-
cuted, the condition code registers will indicate the following:

A. C=1,N=1,V=1,2Z=0
B. C=0,N=1,V=1,2Z=0
C. C=0,N=1,V=0,Z=0
D. C=0,N=0,V=1,Z=1

The divide program shown in Figure 4-16 works only if the di-
vidend is initially less than +128,,. The program can be modified
to work for dividends up to 255,, by replacing the BMI instruction
with the:

BEQ instruction.
BNE instruction.
BCC instruction.
BCS instruction.

oo wp

A binary number can be converted to BCD by repeatedly:

Dividing by powers of two.
Subtracting powers of ten.
Multiplying by powers of two.
Adding powers of ten.

Cows

The DAA instruction is used:

To convert a binary number to BCD.

To convert a BCD number to binary.

After an add instruction to adjust the sum to a BCD number.
After a subtract instruction to adjust the difference to a BCD
number.

oo wp

When vou are adding multiple-precision binary numbers, all bytes
except the least significant ones must be:

Added using the ADD instruction.
Added using the DAA instruction.
Added using the ADC instruction.
Decimal adjusted before addition takes place.

Sowp

