HEATHKIT

CONTINUING
EDUCATION

ol

Individual Learning

Program
MICROPROCESSORS
Unit 5
THE 6800 MICROPROCESSOR — PART 1
EE-3401
HEATH COMPANY Copyright © 1977

Heath Com
BENTON HARBOR, MICHIGAN 49022 AIIRige:ts Rese':::z

Printed in the United States of America

HEATHKIT

.
CONTENTS
Introduction. ... 5-3
Unit Objectives ... e 5-4
Unit Activity Guide ... 5-5
Architecture of the 6800 MPUccoiiiiiininevnnn., 5-6
Instruction Set of the 6800 MPU oot 5-15
New Addressing Modes i, 5-36
Experiments i e 5-52
Unit Examination.......... i e 5-53

Examination AnSWersottt e 5-61

The 6800 Microprocessor — Part 1

INTRODUCTION

Until now, we have confined our study to a simple hypothetical micro-
processor. Obviously, though, this hypothetical model must be very close
tothereal thing, since we have been running its programs on the ET-3400
Microprocessor Trainer. In this unit, you will begin your study of the
actual microprocessors upon which our hypothetical model isbased. The
microprocessor in the ET-3400 Trainer is called the 6800. It was first
released by Motorola in the mid 1970’s. Today, it is also supplied by
several other companies.

The microprocessor in the ET-3400A Trainer is called the 6808. The
primary difference between the 6808 and 6800 microprocessors is the
means by which clock signals are generated. The 6808 has an on-chip
clock circuit, the 6800 does not. Because of this one difference, there will
also be some chip pin assignments that are not identical. These differ-
ences will be discussed in more detail in Unit Seven of this course.
However, in all other characteristics, such as the instruction set and
internal registers, the 6800 and 6808 are identical. It is these identical
characteristics which are the subject of this and the following unit.
Therefore, this unit refers to the 6800 microprocessor only. But, the data
presented also applies to the 6808 in the ET-3400A Trainer.

There are other microprocessors that have similar instruction sets, ar-
chitecture, and addressing modes. Thus, by becoming familiar with the
6800 (6808), you should be able to understand and use a wide range of
microprocessors.

You already know a great deal about the 6800 and/or 6808 microproces-
sor. You have been programming this device for the past several units.
The main difference between the 6800 (6808) microprocessors and our
hypothetical model is complexity. As you will see, the 6800 (6808) is a
vastly expanded version of our hypothetical model.

5-3

5-4

UNIT FIVE

UNIT OBJECTIVES

When you have completed this unit you will be able to:

1.

Draw a programming model of the 6800 MPU.

Explain the purpose of each block in a simplified block diagram of
the 6800 MPU.

Using Appendix A and Figure 5-24 as references, explain the
operation of all the instructions discussed in this unit.

Write simple programs that use indexed and extended addressing.

Using Figure 5-24 as a guide, find the opcode, number of MPU
cycles, number of bytes, and effects on the condition code flags of
every instruction discussed in this unit.

———— e
HEATHKIT
CONTINUING The 6800 Microprocessor — Part 1 | §-§
EDUCATION

UNIT ACTIVITY GUIDE

Completion
Time

Read Section on Architecture of the 6800 MPU.
Complete Self-Test Review Questions 1 — 8.
Read Section on Instruction Set of the 6800 MPU.
Complete Self-Test Review Questions 9 — 26.
Review Appendix A.

Read Section on New Addressing Modes.
Complete Self-Test Review Questions 27 — 43.
Perform Programming Experiments 7 and 8.

Complete Unit Examination.

0 1 N I I O I

Check Examination Answers.

CONTINUING
B5-6 | uniT FiIvE _EDUCATION

ARCHITECTURE OF THE 6800 MPU

In computer jargon, the word architecture is used to describe the compu-
ter’s style of construction, its register size and arrangement, its bus
configuration, etc. The architecture of our hypothetical microprocessor is
shown for one last time in Figure 5-1. By now you should be quite familiar
and comfortable with this architecture.

! MICROPROCESSOR UNIT l’crc c

(MPU)
[ARITHMETIC |
LOGIC UNIT E

(ALY

FETCH EXECLUTE
CONTROL CONTROL

..................... CLOCK
~ _ |l—e— AND
CONTROLLER : CONTROL
SEQUENCER LINES
PROGRAM
COUNTER JITRY)

INSTRUCTION
DECODER

ADDRESS
REGISTER

| —

DATA
REGISTER

becccaw aaw: ccsscescsaaaaa - fTeesrtesccccccercccaccecaneaend

SAEMORY iRAMIES 8-81T

DATA
BUS
INPLT-QUTPY
/o 'L,J
Figure 5-1

Architecture of the hypothetical
microcomputer.

CONTINUING The 6800 Microprocessor — Part 1

The only reason for showing the details of the model is to give you an idea
of what goes on inside the integrated circuit. In an actual microprocessor
the internal structure is often so complex that we become bogged down in
details if we attempt to analyze it too closely. For this reason, a program-
ming model is generally used when a microprocessor is being introduced
for the first time. In the programming model, the emphasis is shifted
upward by an order of magnitude. Any register or circuit that cannot be
directly controlled by the programmer is simply ignored. Consider the
data register for example. There are no instructions that give the pro-
grammer direct control over this register. That is, there are no instruc-
tions such as Load Data Register, Store Data Register, etc. All dataregister
activity is controlled strictly by the MPU. Thus, the programmer can
simply ignore the existence of this register. The same is true of the
address register, the instruction decoder, the controller-sequencer, etc.
Therefore, the programming model of our hypothetical MPU can be
represented as shown in Figure 5-2. This simple diagram is sufficient for
most programming applications since it shows all the registers that can
be directly controlled by the program.

ACCUMULATOR

PROGRAM COUNTER

CONDITION CODE
NIZIVIC] REGISTERS

Figure 5-2
Programming model of the
hypothetical MPU.

5-7

5-8

UNIT FIVE “ToucaTioN
Programming Model of the 6800 MPU
The 6800 MPU is much more complex than our hypothetical MPU.
Consequently, a programming model of the 6800 makes a good starting
point. The programming model is shown in Figure 5-3.
7 [s]
i ACCA] accumuLaTor
7 [+]
{ ACCB | AccumuLaTor B
15 (]
t X | inpex recisTER
15 [+]
{ PC | PROGRAM COUNTER
Figure 5-3
Programming model of the [‘5 = °] STACK POINTER
6800 MPU.
5 0

= CONDITION CODES
I ATTINTZIVIC] Geerser
CARRY -BORROW

| OVERFLOW
(TWO'S COMPLIMENT)

kRO

NEGATIVE
= INTERRUPT MASK

HALS CARRY
(FROM BIT 3)

You will notice immediately that the 6800 MPU has several additional
registers. However, only two of these, the index register and the stack
pointer, are actually new to you. Let’s look at the major differences
between this MPU and our hypothetical model.

Two Accumulators The 6800 MPU has two accumulators instead of
one. They are called accumulator A (ACCA) and accumulator B (ACCB).
Each has its own group of instructions associated with it. The names and
mnemonics of the instructions specify which accumulator is to be used.
Thus, there are instructions such as:

Load Accumuiator A (LDAA)
Load Accumulator B (LDAB)
Store Accumulator A (STAA)
Store Accumulator B {STAB)

Notice that a letter is added to both the name and the mnemonic to
indicate which accumulator is being used.

CON‘I‘INU(NG- The 6800 Microprocessor — Part 1 5-9

From your previous programming experience, you can visualize the
value of a second accumulator. For example consider a program in which
the MPU counts the number of times that some operation occurs. In the
past, we stored the number that the accumulator was presently working
on, loaded the count into the accumulator; incremented the count; stored
the count; and reloaded the original number. With a second accumulator,
none of this is necessary. We can simply maintain the count in ac-
cumulator B while working with the number in accumulator A. In fact,
we can perform any arithmetic or logic operation on two different num-
bers without having to shift the numbers back and forth between mem-
ory.

16-Bit Program Counter The program counter in the 6800 has 16,, bits
rather than 8. Thus, it can specify 65,536,, different addresses. This
means that a 6800 based microcomputer can have up to 65,536,, bytes of
memory. Most applications require substantially less memory than this
maximum number. Fortunately, we can use as little or as much memory
as we need up to the 2'¢ byte limit.

Since the program counter has 16,, bits, the address bus must also be
16-bits wide. Contrast this with the 8-bit address bus of our hypothetical
machine.

You may wonder how we specify a 16-bit address with an 8-bit byte. The
obvious answer is that two 8-bit bytes are required. Recall that in the
direct addressing mode, the address was specified by a single 8-bit byte.
The 6800 microprocessor retains this addressing mode. However, since
an 8-bit address can specify only 256,, addresses, the 6800 MPU can use
this mode only if the operand is in the first 256,, bytes of memory. To
reach higher addresses, a new addressing mode called extended address-
ing must be used. In the extended addressing mode, two bytes are used to
represent each address. This addressing mode will be discussed in more
detail later. For now, keep in mind that there are 65,536,, possible
addresses. The lowest address is 0000,¢ and the highest is FFFF,¢. Using
extended addressing, we have access to any location in memory, but a
2-byte address is required.

HEATHKIT
5-10 | uniT Five CONTINUING

e

Condition Code Registers The 6800 MPU has six condition codes. Four
of these are almost identical to those discussed in an earlier unit. These
include the negative (N), zero (Z), overflow (V) and carry (C) condition
codes. The difference arises because there are two accumulators in the
6800 MPU. Thus, the carry flag is set whenever there is a carry from either
accumulator. By the same token, an overflow in either accumulator will
set the V flag. Later in this unit, you will see how the condition codes are
affected by each instruction.

Two new condition codes are shown in Figure 5-3. The I flag is called an
interrupt mask. We will discuss this flag later when you study interrupts.
The other is called the half carry flag (H). The H flag is set when thereisa
carry from bit 3 of the accumulator. The MPU uses this flag to determine
how to implement the decimal adjust instruction.

These six flags make up bits 0 through 5 of an 8-bit register. Bits 6 and 7 of
the condition code register are not used and are always set to 1. Addi-
tional details of the condition codes will be brought out as the need arises.

Index Register The index register is a special-purpose, 16-bit register
that greatly increases the power of the microprocessor. It allows a power-
ful address mode called indexed addressing. We will examine this
addressing mode later in this unit. For now, consider the index register to
be just another working register. The fact that it holds two bytes instead of
one can be put to good use. The MPU has instructions that allow the index
register to be loaded from two adjacent memory bytes. Another instruc-
tion allows us to store the contents of the index register in two adjacent
memory locations. This allows us to move data in 2-byte groups. Also, the
index register can be incremented and decremented. This lets us main-
tain 16-bit tallies.

Stack Pointer The stack pointer is another special-purpose 16-bit regis-
ter. It allows the MPU and the programmer to use a section of RAM as a
last in, first out (LIFO) memory. This capability is exiremely valuable
when using subroutines or when processing interrupts. These aspects of
the stack pointer will be discussed in the next unit. For the time being
let’s consider the stack pointer to be another 16-bit working register. It too
can be loaded from memory, stored in memory, incremented, and dec-
remented.

The 6800 Microprocessor — Part 1 5—1 1

Block Diagram of the 6800 MPU

Now that you have seen the programming model of the 6800 MPU, take a
look at the block diagram. A simplified block diagram is shown in Figure
5-4. Several data paths, most control lines, and a temporary storage
register have been omitted in favor of the major data paths and registers.

STACK | POINTER

— |
rl\D[X | REGISTER f———l 1 CONTROL : .
b g

111

} INSTRUCTION

DFCODER
[Procraw | counter | A~ hd o

\ DATA
f} REGISTER
J L

DDR[SS REGISTER

N/

) BIDIRECTIONAL
ADDRESS BUS DATA BUS
DRIVERS DRIVERS
-. §-BIT
16-8IT . BIDIRECTIONAL
ADDRESS BUS DATA BUS
Figure 5-4

Simplified block diagram of the
6800 MPU.

9-12

UNIT FIVE

The 16-bit registers are shown on the left. These registers are primarily
concerned with addressing memory. Since the address bus has 16-bits,
all registers associated with addressing must also have 16-bits. Any of the
16-bit registers can be loaded from the data bus. However, because the
data bus has only 8-bits, two operations are required to load the 16-bit
registers. The upper half of the affected register is always loaded first.
Then, a second operation loads the lower half. Although this requires
separate MPU cycles, the microprocessor takes care of these operations
automatically. For example, a single instruction can load the 16-bit index
register with two memory bytes.

The program counter and address register perform exactly the same
functions in the 6800 MPU as they did in our hypothetical model. The
fetch and execute phases for the immediate and direct addressing modes
are virtually identical. The same is true of the relative addressing mode
except that the 8-bitrelative address is added to the 16-bit program count.

The 8-bit registers are shown on the right. Notice that these circuits are
identical to those in our hypothetical model except that there are two
accumulators. The condition code registers monitor both accumulators.
Also, the two accumulators share the ALU. This allows you to keep track
of two separate mathematical operations at more or less the same time.
This arrangement is particularly flexible since the contents of one ac-
cumulator can be transferred to the other or the contents of the two
accumulators can be added together.

HEATHKIT
CONTINUING

SUINC The 6800 Microprocessor — Part 1 | 5-13

Self-Test Review

1. The microprocessor on which our hypothetical model and the
ET-3400 are based is the MPU.

2. A major difference between our hypothetical model and the 6800
MPU is that the latter has two

3. The program counter in the 6800 MPU has bits.

4. How wide is the address bus in a 6800-based microcomputer?
5. What is the range of addresses in the 6800 MPU?
6. List the six condition code flags.

7. Besides the program counter, what other 16-bit registers are used in
the 6800 MPU?

8. In the 6800 MPU, does each accumulator have its own carry flag?

5-14

UNIT FIVE

HEATHKIT

CONTINUING

Smmeees e e

Answers

1. 6800.

2. Accumulators.
3. 16,

4. 16, bits.

5. From 0000 to 65,535,, or 0000 to FFFF.

6. Carry — borrow (C)
Overflow (V)
Zero (Z)
Negative (N)
Interrupt Mask (I)
Half Carry (H)

7. Index register and stack pointer.

8. No, the two accumulators share a common carry flag.

CONTINUING The 6800 Microprocessor — Part 1 j o-1)

INSTRUCTION SET OF THE 6800 MPU

The 6800 MPU has about 100,, basic instructions. Moreover, when all the
different addressing modes are considered, there are 197, different op-
codes to which the MPU will respond.

These instructions can be broken down into seven general categories.
While some of the categories overlap, the general classifications of in-
structions are: arithmetic, data handling, logic, data test, index register
and stack pointer, jump and branch, and conditien code. In this unit we
will discuss most of these instructions in detail. The handful of instruc-
tions that are not discussed in this unit will be described in the following

unit.

In this section we will not be concerned with addressing modes. There-
fore, no opcodes are given. Later, we will look at the various addressing
modes and opcodes. For now, though, let’s identify the instructions by
their names, mnemonics, and operations. You will see what each instruc-
tion does and how it affects the various condition code registers.

Because of the large number of instructions covered in this section, the
explanations will be general and brief. You are net expected to remember
all the details of every instruction. Appendix A of this course contains a
detailed listing of each instruction. It explains every detail of the various
instructions. Afterreading this section, turn to Appendix A and look over
the explanations given there. In the future, when you are in doubt as to
exactly what a particular instruction does, look it up in Appendix A.

5-16

UNIT FIVE

Arithmetic Instructions

Figure 5-5 shows the arithmetic instructions of the 6800 MPU. The name
of each instruction is given on the left. The next column contains the
mnemonics. The center column gives a shorthand description of what the
instruction does. The right-hand columns show how the various condi-
tion code registers are affected.

BOOLEAN/ARITHMETIC OPERATION

COND. CODE REG.

ACCUMULATOR AND MEMORY (A register labels 5(4j3j2|1}0
OPERATIONS MNEMONIC refer to contents) Hil|INjZ]V]C
Add ADDA A+M—A tlel sttt

ADDB B+M—B tlep t|t)tt e
Add Acmltrs ABA A+B~>A el tjs)tls
Add with Carry ADCA A+M+C—A NI B B e B
ADCB B+M+C—8 tlef t1 gt
Complement, 2's NEG 00 -M->M olel t1 D@
(Negate) NEGA |00 —A—A ole| 1 1O@
NEGB 00 -8-8 ele| |t OIO
Decimal Adjust, A DAA icnot:vaeré;’ B;z:gaf«.dd. of BCD Characters oeleltislt|@®
Subtract SUBA A-M—A LN I 2 (Rl B
suss B-M—8 ejlefi |11
Subract Acmitrs. S3A A-B—A LRI B
Subtr. with Carry SBCA A-M-C—>A efe| tltit!s
secs B-M-~C~—8B eleof |ttt

"Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCO numbers. DAA adds 0110 to lower haif-byte if least significant number >1001 or if preceding instruction
caused a Half-carry. Adds 0110 to upper haif-byte if most significant number >1001 or if preceding instruction
caused a Carry. Also adds 0110 to upper half-byte if Jeast significant number >1001 and most significant num-

ber =9,

(Bit set if test is true and cleared otherwise)

@ (8itV) Test: Result = 160000007
@ (BitC) Test: Resuit = 000000007

(® (BitC) Test: Decimal value of most significant BCO Character greater than nine?

(Not cleared if previously set.)

Figure 5-5

Arithmetic instructions.

—
HEATHKIT
CONTIMUING The 6800 Microprocessor — Part 1

To be certain you have the idea, let’s go through the first instruction in
detail. The first instruction is the add instruction. Actually, since the
6800 has two accumulators, there are two add instructions. Their
mnemonics are ADDA and ADDB. Notice that the final letter of the
mnemonic indicates which accumulator (A or B) is involved. The short-
hand representation of the operation is: A+M— A. The note at the top of
this column tells you that the register labels refer to the contents of the
register. Thus, A means the contents of accumulator A and M means the
contents of the affected memory location. The symbol (—) means “Trans-
fer into.” Therefore, A+M— A means ‘“Add the contents of accumulator
A to the contents of the affected memory location and transfer the sum
into accumulator A.”

To see how the condition code flags are affected, you simply look over to
theright under whatever condition code you are interested in. Generally,
the condition code is either unaffected or is tested and set accordingly.
When the condition code is unaffected, this is represented by the symbol
(*). For example, none of the arithmetic instructions affect the I flag. Most
of the arithmetic instructions test the condition codes and set them if the
condition exists. For example, if the result of an arithmetic operation is
zero, the Z flag is set to 1. If this condition does not exist, the Z flag isreset
or cleared to 0. The symbol (¢) means ‘“‘test and set if true; clear other-
wise.” Occasionally, a note is necessary to describe some unusual situa-
tion regarding the condition code. This is represented by a number
within a circle. The notes are given at the bottom of the drawing.

The ADDA and ADDB instructions are self-explanatory. The ABA in-
struction adds the contents of accumulator A to the contents of ac-
cumulator B. The result is stored in accumulator A.

Theadd with carry instructions are identical to those discussed earlier for
our hypothetical machine. Notice that the carry bit is added in with the
sum.

Because two’s complement arithmetic is used in the 6800 MPU, instruc-
tions are provided that allow us to take the two’s complement of a
number. The negate instruction subtracts the contents of the affected
register from 00,¢. This is the same as taking the two’s complement of the
number. The affected register can be any memory location (M) or either
accumulator (A or B). Thus, there are three different negate instructions.
Keep in mind that NEG means “‘take the two’s complement of the affected
memory location;”” NEGA means ‘“take the two’s complement of ac-
cumulator A;” etc.

5-17

5-18

UNIT FIVE

HEATHKIT

CONTINUING

_EDUCATION

'Y

Notice that the NEG instruction allows us to operate on a byte in memory
without first fetching the operand from memory. In the past, we have
loaded the operand, performed the operation, and then stored the new
operand. However, the 6800 allows us to perform certain operations on
the operand without first fetching it from memory. Several examples of
this will be pointed out as we progress through the instruction set.

The decimal adjust instruction performs exactly as it did in our hypothet-
ical machine. The note immediately under the table summarizes its
operation. It must aiso be pointed out that this instruction works only
with accumulator A.

The subtract and the subtract with carry instructions are self-explanatory.
They perform as described earlier for our hypothetical MPU. The 6800
MPU has an additional subtract instruction. The SBA instruction sub-
tracts the contents of accumulator B from the contents of accumulator A.
The resulting difference is placed in accumulator A.

Data Handling Instructions

Figure 5-6 shows the largest group of instructions used by the 6800 MPU.
These can be loosely categorized as data handling instructions.

The clear instructions allow us to clear a memory location or either
accumulator. In the past, we have cleared bytes of memory by first
clearing the accumulator and then storing the resulting 00,4 in the proper
memory location. However, the CLR instruction allows us to clear a
memory location with a single instruction. Notice that some new entries
appear in the condition code registers column. R means that the condi-

tion code is always reset or cleared to 0. S means that the code is always
set to 1.

The decrement instruction allows us to subtract 1 from a memory loca-
tion or from either accumulator. The DEC instruction is especially valu-
able since it allows us to decrement a byte in memory with a single
instruction. Previously we have loaded the byte, decremented it, and
then stored it back in memory.

The increment instructions are similar except they allow us toadd 1 to a
memory location or one of the accumulators. Notice that the INC instruc-
tion allows us to maintain a tally in memory without having to load it.
increment it, and then store it away.

The 6800 Microprocessor — Part 1 | §.1Q

The load accumulator instructions are self-explanatory. Notice that
either accumulator can be loaded from memory.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (Al register tabels s5(af3]2{1]0
OPERATIONS MNEMONIC refer to contents) Hit|NJZIV]C
Clear CLR 00 > M e|e|R|S|R|R
CLRA 00 A e|e|R[S|{R|R

CLRB 00 -8B e|le|R|{S[R|R

Decrement DEC M-1-M ele|tlt]@|e
DECA A-1-A ole|t|t|@®]e

DECB B-1-8B o|left|ti@|e

Increment INC M+1-oM elej 3| 3I®|e
INCA A+1->A ele|t|t|I®)e

INCB B+1-B ojelt|[ti®]e

Load Acmitr LDAA M—A oje|t|3|R|e®
LDAB M-—B e|le[t{tiR|e

Rotate Left ROL M elelt[tI®]|?
ROLA ALIQ«—DEIIDII}—’ elelt|ti®?

ROLB | B 7 e ™ ele|t|t|@®]

Rotate Right ROR MI ele|tit|®]?
rora | A Lo o oo olelt|1|®|

c b7 - oo

RORB BI efe|3[t]|@®]?

Shift Left, Arithmetic ASL M - ole|titi®|?
ASLA A rg«—bg:leD:Ib:)oeo eleit|3l®]

ASLB B oleftiti®

Shift Right, Arithmetic ASR Ml N efe|t|t|®]
ASRA A L_vé]IE[]ID - 0 ool t|t|®]?

aske | 8) 7 % ole|t|t|®]!

Shift Right, Logic LSR M] R elefR|t|®]?
LSRA A 0-»5[1:1:1:1:1390—»!3 ele|R|II®]|?

LSRB B) e|lo|R[{I®]?

Store Acmitr STAA A—-M ejol $ 1 3IR|®
STAB B—>M ele|t|t|R]|e

Transter Acmltrs TAB A-B oot |t|R|o®
TBA B—+A eojejt|Lt|R|®

(® (BitV) Test: Operand = 10000000 prior to execution?
@ (Bit V) Test: Operand = 01111111 prior to execution?
(® (Bit V) Test: Set equal to result of N @ C after shift has occurred.

Figure 5-6 .
Data handling instructions.)

5-20 I UNIT FIVE

HEATHKIT
CONTINUING
EDUCATION

—_——— e

——ﬂo [T [oe, J-J

bg

A.BEFORE ROLA IS EXECUTED.

ACCA

[([Tt [olo[7 o)

8. AFTER ROLA 1S EXECUTED.

Figure 5-7
Executing the ROLA instruction.

ACCA

-—D—-fololomoltﬁ

A, BEFORE RORA IS EXECUTED

[[GoEelTeIE

3. AFTER RORA 1S SXECUTED.

Figure 5-8
Executing the RORA instruction.

The rotate left instructions allow us to shift the contents of the ac-
cumulator or a memory location without losing bits of data. Consider the
ROLA instruction as an example. When this instruction is executed, the
A accumulator and the carry bit form a 9-bit circulating register. That is,
they form a closed loop as shown in Figure 5-7A. When ROLA is exe-
cuted, the data is rotated clockwise. The MSB of A shifts into the carry
register. Simultaneously, the contents of A are shifted left. Notice that the
carry bit is not lost. Instead it is shifted into the LSB of the accumulator.

While the usefulness of this instruction may not be obvious, it is a
valuable tool. For example, it could be used to determine parity. By
repeatedly rotating left and testing the C flag, you could determine the
number of 1’s in the byte. Once you know this, you could easily generate
the proper parity bit.

The ROL instruction allows you torotate a memory byte to the left while it
is still in memory. ROLB allows you to rotate the B accumulator to the left.
In each case, the C register is used as a ninth bit.

The rotate right instructions are identical except that the direction of
rotation is reversed. Figure 5-8 illustrates the execution of the RORA
instruction. This instruction is also valuable. Suppose for example that
we wish to know if the number in the accumulator is even or odd. This is
determined by the LSB of the number. If LSB = 1, the number is odd; if
LSB = 0, the number is even. One way to determine this is to rotate the
number to the right so that the LSB is in the C register. We could then test
the C register to see if it is set or cleared. Notice that the number could
then be restored to its original value by the ROLA instruction.

The arithmetic shift left instruction was discussed earlier in our
hypothetical MPU. The ASLA instruction performs exactly as described
in the previous unit. However, notice that the 6800 MPU also has an
ASLB instruction that performs the same operation with accumulator B.
Also, it has an ASL instruction that allows us to perform this operation on
a byte that is in memory. Figure 5-9 illustrates the execution of this
instruction.

SELECTED MEMORY BYTE

D—-—-[s]oh[tlt[o[o[1}«—0

A. BEFORE ASL IS EXECUTED.

Figure 5-9 ¢ SELECTED MEMORY 5YTE

Executing the ASL instruction. E} wl1fr{r]ojof1]o]

8. AFTER ASL tS EXECUTED.

CONTINUING The 6800 Microprocessor — Part 1] 5-21

While there is only one type of shift left instruction, there are two types of
shift right instructions. Let's discuss the arithmetic shift right instruc-
tions first.

When an arithmetic shift right instruction is executed, the number in the [:llTl o7 [:Clcfl oToTT] .‘@
affected register is shifted right one position. The LSB goes into the C c >
register. B, shifts to B,, etc. B; shifts into B;. However, B, itself remains A BEFORE ASRB 15 EXECUTED.

unchanged. Figure 5-10 illustrates the execution of the ASRB instruction.
Notice that there are also ASRA and ASR instructions listed in Figure 5-6. ACCE ¢

) . GLIoi[iTiTolo] [i]
These perform the same type of shift operation but on accumulator A and = — 4
the selected memory byte respectively. L B SHiEaED 1o RioHT

B. AFTER ASRB 1S EXECUTED.

The logic shift right instructions are different in that they do not retain

the sign bit. When a logic shift right is executed, the contents of the Figure 5-10
affected register are shifted to the right. The LSB goes into the carry Executing the ASRB instruction.
register. The MSB is filled with a 0. For example, the LSR instruction is

illustrated in Figure 5-11. While this instruction shifts the selected mem-

ory locations, LSRA and LSRB can be used to perform similar operations

on accumulators A and B respectively.

SELECTED MEMORY BYTE C

o-—[11011L1T1[1[111DJ [o]

b7

A. BEFORE LSR IS EXECUTED.

SELECTED MEMORY BYTE C

ISMObMihLD'J [

B. AFTER LSR 1S EXECUTED.

Figure 5-11
Executing the LSR instruction.

Referring back to Figure 5-6, the store accumulator instructions are self-
explanatory.

The final data handling instructions are the transfer accumulator instruc-
tions. TAB copies the contents of accumulator A into accumulator B.
After this instruction is executed, the number originally in accumulator
A will be in both accumulators. TBA does just the opposite. It copies the
contents of accumulator B into accumulator A. After TBA is executed, the
number originally in accumulator B will be in both accumulators.

5-22

UNIT FIVE

HEATHKIT
NUING

CONTI
_ EDUCATION

s K

Logic Instructions

The logic instructions in the 6800 MPU are similar to those in our
hypothetical MPU. Figure 5-12 shows the 6800’s logic instructions.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (Al register labels 514 211180
OPERATIONS MNEMONIC refer to contents) H{t|NjZjV]C
And ANDA | AeM—A ole|[t|t]|R]|e

ANDB BeM—B elefl t|tiIRJe
Complement, 1's com MM oo/ 31 TIR|S
COMA A-A ejei t|[3|R]S
comB B8 elelt]|2|{R|S
EORA ATM—-A e|lo| t|t|R|e®
EORB Ba2M—B eo|eoft|lIR|e®
ORA A+M—A e(e|l/ l|R|e®
ORB B+M-—8 eieit|t|lR]|e

Figure 5-12

Logic instructions.

There is one AND instruction for each accumulator. The contents of the
specified accumulator are ANDed bit-for-bit with the contents of the
selected memory location. The result is placed back in the accumulator.
This is identical to the AND instruction in our hypothetical machine.

The complement instructions allow you to take the 1’s complement of the

number in the affected register. COM allows you to complement a byte in
memory.

COMA and COMB allow you to complement the contents of ac-
cumulators A and B respectively. In each case. all 1’s are changed to 0’s
and all 0’s are changed to 1’s.

The exclusive OR instructions work like the one in our hypothetical
MPU. The contents of the specified accumulator are exclusively ORed
bit-for-bit with the contents of the selected memory location. The result is
stored back in the specified accumulator.

The inclusive OR is similar except that the contents of the specified
accumulator are inclusively ORed with the contents of the selected mem-
ory location.

The 6800 Microprocessor — Part 1 5-23

Data Test Instructions

These are a powerful group of instructions that allow us to compare
operands in several different ways. In previous units, you had experience
comparing operands. The most frequently used method was to subtract
one operand from another and test the result for zero or negative. In many
cases, the numeric result of the subtraction was unimportant. We needed
to know only if the result was zero or minus. The data test instructions
allow us to make several different tests without actually producing an
unwanted numeric result. These instructions are shown in Figure 5-13.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 51413]2|1}0
OPERATIONS MNEMONIC refer to contents) HII|N|jZ|ViC
Bit Test BITA AeM o ol t|tiR|eO
BITB BeM ejo| t|[L{R|e®

Compare CMPA A-M elei $1 3181
cmpB B-M ejel ti |t

Compare Acmltrs CBA A-B elel 3|32
Test, Zero or Minus TST M - 00 o|o tIIIRI|R
TSTA A-00 ejeo| 11 ¢|RI|R

TSTB B-00 o|eoit|t|R|R

Figure 5-13

Data test instructions.

The bit test instructions are very similar to the AND instructions. In both
cases, the contents of the specified accumulator are ANDed with the
contents of the selected memory location. The difference is that with the
bit test instruction no logical product is produced. Neither the contents of
the accumulator nor memory are altered in any way. However, the condi-
tion code registers are affected just as if the AND operation had taken
place. Consider the BITA instruction. When executed, A is ANDed with
M. If the result is 00,4, the Z register is set. Otherwise, the Z register is
cleared. If the MSB of the result is 1, the N flag is set. However, the
contents of the accumulator and memory are unaffected.

In the same way, the compare instructions are similar to subtract instruc-
tions except that the resulting numeric difference is ignored. For exam-
ple, when the CMPA instruction is executed, the contents of the selected
memory location are subtracted from the contents of accumulator A. The
condition codes are affected just as if a difference had been produced.
However, the original contents of accumulator A and memory are unaf-
fected.

5-24 | uniT Five

The compare accumulators instruction (CBA) works the same way. The
condition codes are set as if the contents of B were subtracted from the
contents A. However, the contents of the accumulators are unaffected.

Finally, the test for zero or minus instruction allows you to test the
number in one of the accumulators or the memory to see if it is negative or
zero. When this instructicn is executed, the MPU looks at the number in
question and sets the N and Z flags accordingly. The number itself is not
changed.

Index Register and Stack Pointer Instructions

The index register and stack pointer are 16-bit registers. Figure 5-14
shows eleven instructions that ailow us to control the operation of these
registers. Because of the 16-bit format, the load, store, and compare
instructions are slightly different from those discussed earlier.

INDEX REGISTER AND STACK 514(3})2j}1130
POINTER OPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION | H|1 [N jZ]V |C
Compare Index Reg CPX (Xp/X{) - (M/M+1) ele M|t |@D]e
Decrement Index Reg DEX X-1-X eisjojlie]e
Decrement Stack Pntr DES SP-1->8P ojloejojeje|e
Increment {ndex Reg INX X+1=>X ojloejo|lje]e
Increment Stack Pntr INS SP+1—+>SP o|lojojoje]|e
Load Index Reg LDX M= Xy, (M+1) > X, elei®|t|R]e
Load Stack Pntr LDS M —>SPy, (M+1) >8P, oleid|t!R|e
Store Index Reg STX Xy =M, X > (M+1) ele |t R |e
Store Stack Pntr STS SPy M, SP_ > (M +1) oje!®|t|R|e
Indx Reg — Stack Pntr TXS X-1->5P ojlo|ojojeo|e
Stack Pntr = Indx Reg TSX SP+1-X sjlojejojeije

@ (Bit N} Test: Sign bit of most significant (MS) byte of result = 1?
@ {Bit V) Test: 2's complement overflow from subtraction of LS bytes?
® (Bit N} Test: Result less than zero? (Bit 15 = 1)

Figure 5-14
Index register and stack pointer
instructions.

The 6800 Microprocessor — Part 1

The compare index register (CPX) instruction allows us to compare the
16-bit number in the index register with any two consecutive bytes in
memory. Recall that the index register (X) will hold two bytes. The higher
byte is identified as X, while the lower byte is called X;. When the CPX
instruction is executed, Xy is compared with the 8-bit byte in the
specified memory location (M). Also, X; is compared with the byte
immediately following the specified memory location (M+1). The com-
parison is the same as if M and M+1 were subtracted from Xy and X,
except that no numeric difference is produced. Neither X nor M is
changed in any way. However, the N, Z, and V condition codes are
affected as shown in Figure 5-14. Generally, the Z code is the one we are
interested in since it tells us whether or not an exact match exists between
the index register and the two bytes in memory.

The next four instructions are self-explanatory. They allow us to incre-
ment and decrement either the index register or the stack pointer. For one
thing, these instructions allow us to maintain two separate 16-bit tallies
simultaneously. However, the real value of these instructions and their
associated registers will be discussed later.

The load and store instructions for the 16-bit registers are shown next in
Figure 5-14. Since these are two byte registers, the LDX and LDS instruc-
tions must load two bytes from memory. In the case of the index register,
the specified memory byte (M) is loaded into the upper half of the index
register (Xy). An instant later, the next byte in memory (M+1) is automa-
tically loaded into the lower half of the index register (X,). Thus, the
operation can be described as: M—Xy, (M+1) - X|.

Because the stack pointer is also a 16-bit register, the load stack pointer
instruction (LDS) works the same way. Its operation can be described as:
M — SPy, (M+1) — SP;. Here, SPy refers to the upper half of the stack
pointer while SP, refers to the lower half.

When the contents of the 16-bit registers are being stored, the operation is
reversed. For example, the STX instruction stores Xy in M and X; inM+1.
A similar instruction, STS, allows us to store the contents of the stack
pointer in the same way.

The final two instructions in this group allow us to transfer numbers
between these two 16-bit registers. The TXS instruction loads the stack
pointer with the contents of the index register minus one. The TSX
instruction loads the index register with the contents of the stack pointer
plus one. A more detailed discussion of these two important registers and
their associated instructions will be given in the next unit.

5-25

5-26 | uniT Five

———
HEATHKIT
CONTINUING

EDUCATION |

Branch Instructions

The branch instructions are shown in Figure 5-15. Two additional in-
structions are also thrown in since they affect the program counter.

BRANCH 5{4j3]2}1]0
OPERATIONS MNEMONIC BRANCH TEST H{lI{N]JZ|V{C
Branch Always BRA None ojlejojlojo]e
Branch If Carry Clear BCC C=0 ojlof{ojoleole
Branch If Carry Set BCS c=1 eoloejojoie e
Branch If = Zero BEQ 2=1 o(fojefojoie
Branch if > Zero BGE NaV=0 eloejejo|eo|e
Branch If > Zero BGT Z+INDVI=0 oloelojejo}e
Branch !f Higher BHI C+2Z2 =0 ojloejlojojole
Branch If < Zero BLE Z+{INaV)=1 ojoleofojo]e
Branch If Lower Or Same BLS C+2z=1 oo 000 o0
Branch f < Zero BLT NavVv=1 oo 0 o000
Branch If Minus BMI N=1 o/o|ojojoe
Branch If Not Equal Zero BNE Z2=0 eoloejojoio|e
Branch if Overflow Clear BVC V=0 (R EE NN NN K
Branch If Qverflow Set BVS V=1 ojoloiaje]e
Branch if Plus BPL N=0 eojoiofojo|e
No Operation NOP Advances Prag. Cntr. Only oleojojojo]e
Wait for interrupt WAI OILI IR

O i

Set when interrupt occurs. If previousty set, a Non-Maskable Interrupt is
required to exit the wait state.

Figure 5-15
Jump and branch instructions.

CONTINUING The 6800 Microprocessor — Part 1

Nine of these instructions were discussed in the previous unit. These are:
Branch Always (BRA); Branch If Carry Clear (BCC); Branch If Carry Set
(BCS); Branch If Equal Zero (BEQ); Branch If Not Equal Zero (BNE);
Branch If Minus (BMI); Branch If Plus (BPL); Branch If Overflow Clear
(BVC); and Branch If Overflow Set (BVS).

Before we discuss the new branch instructions, here are some of the
symbols we will be using. The symbol (=) means “is greater than or is
equal to”’; (>) means ‘is greater than’'; (<) means “is less than or is equal
to”: (<) means ‘‘is less than’’; and (#) means “is not equal to.”

Now consider the Branchllf Greater Than or Equal instruction (BGE). This
instruction is normally used after a subtract or compare instruction. It
will cause a branch operation if the two's complement value in the
accumulator is greater than or equal to the two’s complement operand in
memory. This condition is indicated by the N and V flags having the same
value. The MPU determines if this condition is met by exclusively ORing
N and V and examining the result.

Three simple examples may help illustrate the operation of this instruc-
tion. Let’s start with a number in the accumlator that is greater than the
operand in memory:

Number in Accumulator 00000010,
Operand in Memory = (00000001,

When the operand is subtracted, the result is 00000001,. With this result,
both N and V are cleared to 0. Notice that N and V are equal and N () V =
0. If the BGE instruction followed the subtract operation, the branch
would be implemented.

Now see what happens when the number in the accumulator is equal to
the operand:

Number in Accumulator = 00000010,
Operand in Memory 00000010,

When the operand is subtracted, the result is 00000000,. Again N and V
are cleared to 0. Thus, N and V are still equal and N) V = 0. Again, the
BGE instruction would cause a branch to occur.

5-27

5-28

UNIT FIVE

Finally, note what happens when the number in the accumulator is
smaller:

Number in Accumulator 00000001,
Operand in Memory = 00000010,

When the operand is subtracted, theresultis 11111111,. Thistime N is set
but V is cleared. Thus, N and V are not equal. Therefore, N@® V =1.In
this case, the BGE conditions are not met and no branch will occur. The
branch occurs if the two’s complement value in the accumulator is
greater than or equal to the two’s complement operand in memory.

Next, consider the Branch If Greater Than (BGT) instruction. This in-
struction is normally used immediately after a subtract or compare opera-
tion. The branch will occur only if the two’s complement minuend was
greater than the two’s complement subtrahend. By trying several exam-
ples as we did above, you will find that the branch conditions are met
whenZ =0and N =V,

The Branch If Higher (BHI) instruction is similar to the BGT instruction
except that it is concerned with unsigned numbers. BHI is normally used
after a subtract or compare operation. The branch will occur only if the
unsigned minuend was greater than the unsigned subtrahend. By trying
several different examples, you can prove that this occurs only when the
C and Z flags are beth 0.

The Branch If Less Than or Equal (BLE) instruction allows you to com-
pare two’'s complement numbers in another way. If it is executed im-
mediately after a subtract or compare operation, the branch will occur
only if the two’s complement minuend was less than or equal to the two’s
complement subtrahend.

HEATHKIT

CONTINUING The 6800 Microprocessor — Part 1

The Branch If Lower Or Same (BLS) instruction is similar to the BLE
instruction except that unsigned numbers are compared. When it is
executed immediately after a subtract or compare operation, the branch
will occur only if the unsigned minuend was lower than or equal to the
unsigned subtrahend.

The Branch If Less Than Zero (BLT) instruction is also similar to the BLE
instruction except that the equal qualification is removed. If BLT is
executed immediately after a subtract or compare operation, the branch
occurs only if the two’s complement minuend was less than the two’s
complement subtrahend.

Two additional instructions are included in Figure 5-15. Although they
are not branch instructions, they are included here since they do not seem
to fit any of the other categories.

The No Operation (NOP) instruction is a ‘““do-nothing” instruction that
simply consumes a small increment of time. It does not change the
contents of any register except the program counter. It does increment the
program counter by one and consumes two MPU cycles. In spite of this,
the NOP is a very useful instruction. When writing a program, we fre-
quently use too many instructions. Once the program is loaded in mem-
ory, it is often inconvenient to simply remove an instruction. The hole left
in memory can be filled by moving back all instructions that follow.
However, a faster way is to simply fill the hole with one or more NOP
instructions.

The Wait For Interrupt (WAI) instruction is the 6800’s version of a HLT
instruction. In earlier units we used this instruction at the end of all our
programs. We will continue to use it in the same manner in the future.
However, as you will see in the next unit, there is more involved in
executing the WAI instruction than simply stopping the MPU. For now,
though, continue to think of the WAI as a simple halt instruction.

5-29

HEATHKIT

CONTINUING
5-30 | uniTFive EWCA#ON

A s

Nt

Condition Code Register Instructions

The 6800 MPU has eight instructions that allow us direct access to the
condition codes. These are listed in Figure 5-16.

CONDITION CODE REGISTER 5 14}3j2}j1¢}¢8
BOOLEAN

OPERATIONS MNEMONIC OPERATION [H |} IN] Z]|V |C

Clear Carry CLC 0—~C B EEEREERE) R

Clear interrupt Mask CLi 0t e |R o /eoe e }|e

Clear Qverflow CcLv 0-v oo e @R |e

Set Carry SEC 1-C oo e |e]e |S

Set Interrupt Mask SEI 11 e |S oo e |o

Set Qverflow SEV 1=V o |o |0 je|S |

Acmitr A~ CCR TAP A —CCR O

CCR — Acmitr A TPA CCR—A] lo I] lo Io lo

R = Reset

S = Set

o = Not affected

() (ALL) Set according to the contents of Accumulator A.

Figure 5-16

Conditicn code register instructions.

Most of these instructions are self-explanatory. The Clear Carry (CLC)
instruction resets the C flag to 0 while the Set Carry (SEC) sets itto 1. In
the same way, the CLV and SEV instructions allow us to clear and set the
overflow flag. Also, the CLI and SEl instructions can be used to clear or set

[:lblsl‘lalzl]lol seen the interrupt flag.

HTTINTZTVIC] cc You will notice that there are no instructions for individually clearing the
CARRY -BORROW N, Z, or H flags. However, we can still set or clear these flags with the
OVERFLOW Transfer Accumulator A to the Processor Status Register (TAP) instruc-
ZE”:ES FORPLEMERT tion. Figure 5-17 illustrates the execution of this instruction. The con-
NEGATIVE tents of bits 0 through 5 of accumulator A are transferred to the condition
INTERRUPT MASK code registers. Thus, this instruction allows us to set or clear all the
HALF CARRY condition codes at once.

Figure 5-17

Executing the TAP instruction.

The 6800 Microprocessor — Part 1

The final instruction is the Transfer Processor Status to Accumulator A
(TPA) instruction. When this instruction is executed, the contents of the
condition coderegisters are transferred to bits 0 through 5 of accumulator
A. This operation is illustrated in Figure 5-18. Notice that bits 6 and 7 of
the accumulator are set to 1.

BIT POSITIONS
7 6 543 21310

II | ACCA
1
j— [RTTIN]Z]VIC] cc

L—CARRY-BORROW

OVERFLOW

iTWO'S COMPLEMENT)
ZERC

NEGATIVE
INTERRUPT MASK
HALF CARRY

Figure 5-18
Executing the TPA instruction.

Summary of Instruction Set

As you can see, the 6800 MPU has a wide variety of instructions. In this
section, most of the instructions have been mentioned briefly. However, a
full explanation of some instructions must wait until additional new
concepts have been covered.

In one short section, it is very difficult to cover every instruction in detail.
And, it is virtually impossible for the reader to remember all the details of
each instruction. Remember, all of the instructions available to the 6800
MPU are explained in detail in Appendix A of this program. Also, they
are arranged alphabetically by their mnemonics for easy reference. Refer
to Appendix A any time you are in doubt about what an instruction does.
Be sure to look over the introductory material in the Appendix so that you
understand all the conventions and symbols.

5-31

5-32

UNIT FIVE

Self-Test Review

9.

10.

11.

12.

13.

14.

15.

16.

17.

List the seven general categories of instructions.
What is meant by the shorthand notation: A+B — A?

How is the C flag affected by the “add” and ‘“‘add with carry”
instructions?

Is the C flag changed when the AND instruction is executed?

Explain the difference between the NEG instruction and the COM
instruction.

Explain the difference between the ANDA instruction and the
BITA instruction.

The decimal adjust instruction is associated with which ac-
cumulator?

When the RORA instruction is executed the LSB of accumulator A
is shifted into the register.

List eleven operatiens that can be performed directly to an operand
in memory without first loading it into one of the MPU registers.

CONTI i —

3 The 6800 Microprocessor — Part 1
=]
18. Explain the difference between the SUBB instruction and the

19.

20.

21.

22.

23.

24.

25.

26.

CMPB instruction.

List the four types of logic operations that the 6800 MPU can
perform.

When the LDX instruction is executed, from where is the index
register loaded?

List four conditional branch instructions that are commonly used
after a compare or subtract instruction to compare two’s comple-
ment numbers.

Explain the difference between the BGT and BHI instructions.

Which instruction is often used to fill in a hole left in a program
after an unwanted byte is removed?

Which instruction in the 6800 roughly corresponds to the halt
instruction in our hypothetical machine?

Which of the condition codes can be individually set or cleared?
When you have some doubt as to exactly what operation is

performed by a given instruction, where can you look to find the
answer?

5-33

5-34

UNIT FIVE

Answers

9.

10.

11.

12.

13.

14.

15.

16.

17.

Arithmetic, data handling, logic, data test, index register and stack
pointer, jump and branch, condition code.

Add the contents of accumulator A to the contents of accumulator
B; transfer the result to accumulator A.

The C flag is set if a carry occurs; it is cleared otherwise.
No, the C flag is unaffected by the AND instruction.

The COM instruction replaces the operand with its 1’s comple-
ment. The NEG instruction replaces the operand with its 2’s com-
plement.

With the ANDA instruction, the result of the AND operation is
placed in accumulator A. With the BITA instruction, the condition
code registers are set according to the result but the result is not
retained.

The decimal adjust instruction works only with the A accumulator.

Carry (C).

A byte in memory can be: cleared, incremented, decremented,
complemented, negated, rotated left, rotated right, shifted left
arithmetically, shifted right arithmetically, shifted right logically,
and tested.

HEATHKIT
CONTINUING
EDUCATION

S e

18.

19.

20.

21.

22.

23.

24.

25.

26.

The 6800 Microprocessor — Part 1

With the SUBB instruction, a difference is produced and placed in
accumulator B. With CMPB, the flags are set as if a difference were
produced, but the difference is not retained.

Complement, AND, inclusive OR, and exclusive OR.

The upper half of the index register is loaded from the specified
memory location; the lower half from the byte following the
specified memory location.

BGE, BGT, BLE, BLT.

BGT is used to test the result of subtracting two’s complement
numbers. BHI is used to test the result of subtracting unsigned
numbers.

NOP.

WAL

C,I,and V.

Appendix A of this course.

5-35

5-36

UNIT FIVE

NEW ADDRESSING MODES

In previous units, we have discussed four addressing modes. Let’s briefly
review these.

In the immediate addressing mode, the operand is the memory byte
immediately following the opcode. These are generally two byte instruc-
tions. The first byte is the opcode, the second is the operand. However,
there are exceptions to the two-byte rule. Some operations involve the
16-bit index register and stack pointer. In these cases, the operand is the
two bytes immediately following the opcode. These are three byte in-
structions. The first byte is the opcode, the second and third are the
operand.

In the direct addressing mode, the byte following the opcode is the
address of the operand. These are always two byte instructions. The first
byte is the opcode; the second is the address of the operand. An eight-bit
byte can specify addresses from 00 to FF,¢. Thus, when the direct address-
ing mode is being used, the operand must be in the first 256,, bytes of
memory. Since the 6800 MPU can have up to 65,536,, bytes of memory,
another means must be used to address the upper portion of memory.

The relative addressing mode is used for branching. These are two byte
instructions. The first byte is the opcode, the second is the relative
address. Recall that the relative address is added to the program count to
form the absolute address. Since the 8-bit relative address is a two’s
complement number, the branch limits are +127,, and —128,,.

Inthe inherent addressing mode either there is no operand or the operand
is implied by the instruction. These are one byte instructions.

In this section, we will discuss two new addressing modes. These are
called extended addressing and indexed addressing. We will discuss
extended addressing first.

CONTINUING The 6800 Microprocessor — Part 1

Extended Addressing

Extended addressing is similar to direct addressing but with one signifi-
cant difference. Recall that with direct addressing the operand must be in
the first 256,, bytes of memory. Since this represents less than one
percent of the addresses available to the 6800 MPU, a more powerful
addressing mode is needed. The extended addressing mode fills this
need.

The format of an instruction that uses extended addressing is shown in
Figure 5-19. The instruction will always have three bytes. The first byte is
the opcode. The second and third bytes form a 16-bit address. Notice that
the most significant part of the address is the byte immediately following
the opcode. Since this instruction has a 16-bit address, the operand can be
at any one of the 65,536,, possible addresses.

CITTTTT I orcone

rener oroer eyt |] T] [] []

ADDRESS

voweroroer vrel T] [[[| |]

Figure 5-19
Format of an instruction that uses the
extended addressing mode.

Suppose, for example, that you wish to load the operand at memory
location 2134, into accumulator B. The instruction would look like this:

F6 Opcode for LDAB extended
21 Higher order address
34 Lower order address

By the same token, if you wish to increment the number in memory
location AA00,q, the instruction would be:

7C Opcode for INC extended
AA Higher order address
00 Lower order address

5-37

5-38

UNIT FIVE

HEATHKIT
CONTINUING

e

The extended addressing mode allows us to address an operand at any
address including the first 256,, bytes of memory. Thus, if you wish to
load the operand at address 0013, into accumulator A, you can use
extended addressing:

B6 Opcode for LDAA extended
00 Higher order address
13 Lower order address

Or, you can use direct addressing:

96 Opcode for LDAA direct
13 Address

Notice that, with direct addressing, the higher order address can be
ignored since it is always 00. Because it saves one memory byte and one
MPU cycle, direct addressing is normally used when the operand is in the
first 256,, bytes of memory. Extended addressing is used when the
operand is above address 00FF ;. However, as you will see later, some
instructions do not have a direct addressing mode. In these cases, ex-
tended addressing must be used even if the operand is in the first 256,
memory locations.

HEATHKIT
CONTINUING

EDUCATION The 6800 Microprocessor — Part 1

|
|

e

|
i
w
‘I!

Indexed Addressing

The most powerful mode available to the 6800 MPU is indexed address-
ing. Recall that the 6800 MPU has a 16-bit index register. There are
several instructions associated with this register. They allow us to load
the register from memory and to store its contents in memory. Also, we
can increment and decrement the index register. We can even compare its
contents with two consecutive bytes in memory. These capabilities alone
make the index register a very handy 16-bit counter. However, the real
power of the index register comes from the fact that we can use this
counter as an address pointer. Since this is a 16-bit register, it can point to
any address in memory.

Purpose Before going into the details of how indexed addressing
works, let’s see why it is needed. Let’s assume that we wish to add a list of
20, numbers, and that the numbers are in 20, consecutive memory
locations starting at address 0050. Using the addressing modes discussed
earlier, our program might look like this:

CLRA Clear Accumulator A.
ADDA Add the first number

50 To accumulator A.
ADDA Add the second
51 number to accumulator A.
ADDA Add the third number
52 to accumulator A.
ADDA Add the last number
6F to accumulator A.
WAI Wait.

While this accomplishes the desired result, it requires a long repetitive
program. The above program would require 66,, bytes of memory. Notice
that all the ADDA instructions are identical except that each successive
address is one larger than the previous address. Indexed addressing can
greatly simplify programs of this type.

5-39

5-40

UNIT FIVE

Instruction Format The format of an instruction that uses indexed
addressing is shown in Figure 5-20. Notice that this is a two-byte instruc-
tion. The first byte is the opcode, and the second is called an offset
address. The offset address is an unsigned 8-bit binary number. It is
added to the contents of the index register to determine the address at
which the operand is located.

OPCODE

OFFSET ADDRESS

Figure 5-20
Format of an instruction that uses

the indexed addressing mode.

Every instruction that involves an operand in memory can use the index-
ed addressing mode. In this unit, we will use the following convention to
indicate indexed addressing:

LDAA, X

STAA, X

ADDB, X
etc.

In each case, the X tells us that indexed addressing is used. For example,
the first instruction means: “using indexed addressing, load the contents
of the specified memory location into accumulator A.”” Now let’s see how
the address of the operand is determined.

HEATHKIT

NUING The 6800 Microprocessor — Part 1 J 5-41

Determining the Operand Address When indexed addressing is being
used, the address of the operand is determined by the offset address and
the number in the index register. Specifically, the 8-bit offset address is
added to the 16-bit address in the index register. The 16-bit sum becomes

the address of the operand. Figure 5-21 illustrates this.

MEMORY

0000
0P CODE

0ool FOR LDAA,YX
0002

0003
0004
0005

OFFSET /’/)

ADDRESS

INDEX
REGISTER

0144

OPERAND 7

Figure 5-21
The operand address is formed by
adding the offset address to the
contents of the index register.

Here, the instruction in memory location 0004, is LDAA, X. The offset
address is 11,,. The contents of the index register are 0133,,. When the
LDAA, X instruction is executed, the address of the operand is formed by
adding the offset address to the number in the index register. In this case,
the operand address will be:

0133,
+ 114
0144,

The operand at this address is loaded into accumulator A. In this exam-
ple, the operand FF is loaded into accumulator A when the instruction at
location 0004 is executed. It is important to remember that this does not
change the contents of the index register in any way. That is, the index
register will still contain 01334 after the instruction is executed.

5-42

UNIT FIVE

Adding a List of Numbers To see how this addressing mode saves
instructions, consider the problem given earlier. Recall that we were to
add 20, numbers stored in consecutive memory locations starting at
address 0050. Using indexed addressing for the add instruction, our

program looks like the one shown in Figure 5-22.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS HEX CONTENTS

0010 CE LOX # Load index register immediate with the

0011 00 co address of the

0012 50 50 first number in list.

0013 4F CLRA Clear accumulator A

0014 AB == ADDA X Add to accumulator A using indexed addressing

0015 00 0 with an offset address of 00.

0016 08 INX increment index register.

0017 8cC CPX # Compare the contents of the index register

0018 00 00 with an address that 1s one greater than the

0019 70 70 address of the last number in the list.

001A 26 BNE it not equal. branch back

0018 F8 F8 to the ADDA. X instruction.

001C 3E WAL Otherwise. hait.

Figure 5-22
Program for adding a list of
20,; numbers.

The first instruction is load index register immediate. Notice that a new
symbol is used in this program. The symbol # is used to indicate the
immediate addressing mode. Thus, the LDX# instruction causes the
operand immediately following the opcode to be loaded into the index
register. Recall that the index register can hold two 8-bit bytes. The
operand is the two-byte number 0050,5. You may recognize that thisis the
address of the first number in the list of numbers that is to be added.

The next instruction clears accumulator A. The sum will be accumulated
in this register, so it is important that it be cleared initially.

The third instruction (ADDA, X) is the only instruction in the program
that uses indexed addressing. Notice that the symbol X indicates the
indexed addressing mode. The offset address is 00. Recall that the
operand address is determined by adding the offset to the contents of the
index register. The index register contains 0050,; from a previous in-
struction. Since the offset is 00, the operand address is 0050,4. That is, the
contents of memory location 0050 are added to the contents of ac-
cumulator A. Recail that 0050,4 is the address of the first number in the
list.

HEATHKIT
CONTINUING

The 6800 Microprocessor — Part 1

The fourth instruction increments the index register to 0051, Notice that
the index register now points to the address of the second number in the
list.

The fifth instruction cofnpares the number in the index register with a
number that is one greater than the address of the last number in the list.

If a match occurs, the Z flag will be set. Of course in this case, no match
occurs yet. Notice once again that the symbol # indicates the immediate
addressing mode. Thus, the contents of the index register are compared
with the next two bytes in the program or 0070.

The BNE instruction tests the Z flag to see if the two numbers matched. If
no match is indicated, the relative address (F8) directs the program back
tothe ADDA, X instruction. The first pass through the loop ends with the
first number in accumulator A.

The second pass through the loop begins with the ADDA, X instruction
being executed again. This time the index register points to address 0051.
Therefore, the second number in the list is added to accumulator A.
Accumulator A now contains the sum of the first two numbers. The index
register is then incremented to 0052. Its contents are again compared
with 0070. No match exists so the BNE instruction causes the loop to be
repeated again.

The loop is repeated over and over again. Each time, the next number in
the list is added to accumulator A. This process continues until the last
number in the list is added. At that time, the index register will be
incremented to 0070. Thus, when the CPX# instruction is executed, the Z
flag will be set because the two numbers match. The BNE instruction
recognizes that a match has occurred. Consequently, it does not allow the
branch to occur and the next instruction in sequence is executed. Because
this is the WAl instruction, the program halts. At this time, the sum of the
20, numbers in the list will be in accumulator A.

5-43

5-44 l UNIT FIVE

HEATHKIT

Adding alist of numbers is a classic example of how indexing can be used
to shorten a program. However, this example does not illustrate the full
power of indexed addressing. For example, it does not illustrate the
advantage of the offset address. Because indexed addressing is so impor-
tant, let’s look at another example.

Copying a List Let's assume we have a list of 10, numbers that we wish
to copy from one location to another. For simplicity, assume that the list
is presently in addresses 0030 through 003F and that we wish to copy the
list in location 0040 through 004F. Without using indexed addressing,
our program might look like this:

LDAA
30
STAA
40
LDAA
31
STAA
41

LDAA
3F
STAA
4F
WAI

As you have seen; long, repetitive programs such as this are excellent
candidates for indexed addressing.

HEATHKIT

CONTINUING The 6800 Microprocessor — Part 1

!

Using indexed addressing, our program might look like that shown in
Figure 5-23. The first step is to load the index register with the first
address in the original list. The LDAA, X instruction has an offset address
of 00. Therefore, accumulator A is loaded from the address specified by
the index register (0030). That is, the first number in the original list is

loaded into accumulator A when the LDAA, X instruction is executed.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS HEX CONTENTS

0010 CE LDX # Load index register immediate with

0011 00 00 the first address of the original

0012 30 30 hist.

0013 A6 > LDAA, X Load accumulator A indexed with

0014 00 00 an oftset of 00.

0015 A7 STAA X Store accumulator A indexed with

0016 10 10 an oftset of 10,.

0017 08 INX Increment index register.

0018 8C CPX # Compare index with one greater

0019 00 00 than last

001A 40 40 address in original list.

0018 26 BNE i not equal. branch back to the

001C F6 —— 6 LDAA, X instruction.

001D 3E WAI Otherwise, halt.

Figure 5-23

Program for copying a list from
addresses 0030 — 003F into
addresses 0040 — 004F.

The STAA, X instruction illustrates the use of the offset address. Notice
that the offset is 10. This number is added to the address in the index
register to form the effective address at which the contents of ac-
cumulator A are stored. Thus, the contents of accumulator A are stored at
address 0040. Remember, this does not change the number in the index
register in any way. By using the offset, we can load the accumulator
indexed from one address and store the accumulator indexed at another.

Next, the index register is incremented to 0031. It is then compared with
0040. Since no match exists, the BNE instruction directs the program
back to the LDAA, X instruction. The loop is repeated until the entire list
is rewritten in locations 0040 through 004F. After the last entry in the list
is copied, the index register is incremented to 0040. Thus, the CPX#
instruction sets the Z flag allowing the BNE instruction to divert the
program from the loop. The program halts after the last entry in the list is
written in its new position in memory.

5-45

5-46

UNIT FIVE

Instruction Set Summary

You have now been introduced to most of the instructions available to the
6800 MPU. You have also been introduced to all of the addressing modes.
Now let’s look at the complete instruction set.

Figure 5-24 summarizes the 6800’s instructions and addressing modes.
This 2-page Figure contains a wealth of information. For your conveni-
ence, this information is repeated on the Instruction Set Summary card
provided with the course. You should keep this card handy. After a
while, you will be able to write long, complex programs using only the
card for reference.

The left-hand column of Figure 5-24 lists the names and mnemonics for
each of the instructions. In many cases, a single name such as ““add” is
associated with more than one mnemonic. For example, ADDA is an add
operation that involves accumulator A while ADDB is an add operation
that involves accumulator B.

The center column gives important information about the addressing
modes. Notice that the ADDA instruction can have any one of four
addressing modes: immediate, direct, indexed, or extended. Three facts
are given for each addressing mode. The hexadecimal opcode is given in
the OP column. For example, the opcode for ADDA immediate is 8B
while the opcode for ADDA direct is 9B.

The column labeled (~) tells the number of MPU cycles required to
execute the instruction. This information is important because it allows
us to determine exactly how long it will take to run a given program. As
you will see later, an MPU cycle is equal to one cycle of the MPU clock.
For example, if the clock frequency is 1 MHz, one MPU cycle will be one

- microsecond. With this clock rate, 2 microseconds are required to exe-

cute the ADDA immediate instruction while 5 microseconds are required
for the ADDA indexed instruction.

The column labeled {#) indicates the number of bytes required by the
instruction. ADDA immediate, ADDA direct, and ADDA indexed are
two-byte instructions while ADDA extended is a three-byte instruction.

The next column to the right gives the shorthand notation for the Boolean
or arithmetic operations performed. Finally, the right-hand column indi-
cates how the condition code registers are affected by each instruction.

If you study the instruction set carefully, you will find that there are a few
instructions that we have not yet discussed. These will be described in
the next unit.

The 6800 Microprocessor — Part 1 5- 47
ADDRESSING MODES COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (AH rogister loboks slaj3j2i11]0
OPERATIONS meemomicjor | ~ [#jop |~ | #lop |~ #lor|~jalor|~|# refor 10 contawts) HitiNjzZlv]ec
Add ADDA |88 | 2 {2 |98 |3 |2 |AB|5S|2{8s)4a |3 A+M-A tleft]titf
ADDE |CB| 2 {208 {3 |2 |es8 (5 |2 FB| 4 |3 B+M—B tlef t|tit]:
Add Acmitrs ABA Bi2}1]A+B-A tiel sttt
Add with Carry ADCA |89 | 2 | 2}99 {3 |2 [A9 5|2 8|43 A+M+C—=A tlef ittt
aoce |c9 | 2| 2fo9 |3 [2|€s s |2jFa| a3 B+M+C—B tlel syttt
And ANDA |84 | 2 [2194 {3 ;2 fAe |5 | 2|88 4|3 AeM~—A IR EILEE)
ANDB | C4 [2 |2 |Da |3 |2 a5 |2 Fs |4 |3 BeM-B ejelt|t R
Bit Test BITA 85 12 {295 |32 }A5 |5 2|85 |4 |3 AeM ejejt|tlRr]e
BITB cs| 2 f2fos |3 |2 (€es |5 |2|F5| 4|3 BeM oleit|tiR|e
Clear CLR 6F [7121 |63 00 ~M ele|lR{S|[RIR
CLRA 4F 1 2] 1700-~A elelRr|S|RIR
CLRB SF | 2] 1008 eje|RiS[R|R
Compare CMPA |81 | 2 | 2|9 {3]2 A (5|28 4] 3 A-M ejoft|s|t]:
CMPB 22|03 {2 lEt s 2]F|4}3 B-M ejof t et
Compare Acmitrs CBA nita2li1ja-8 ejoftisftlt
Complement, 1's com 63 72|16]3 MM oje|titiR|sS
COMA 431 2] 1]A-A oleftltin|s
coms 3 (2] 1]18-8 ele|t ¢t RS
Complement, 2's NEG 60 | 7| 2|70 |63 00 -M—M ele| 1| 1|DI@
(Negate) NEGA 0 [2]1]00-a-A ele| 1] 1|OG
NEGB 0 (2| 1]00-8-8 ool t|t{O®
Decimat Adjust, A DAA 92| i::";’é;‘;’:;’:ﬂ‘“’“ ot BCD Characters | g1 g] 3| 1] 1|@®
Decrement DEC 6A |1] 211} s6 |3 M-1-M ejejt|t|@]e
DECA a2 1l A-1=A oot t|@|e
DECB SA | 2| 1[B-1-B olel it @]
Exclusive OR EORA {88 | 2 | 2|98 {3 |2 |A8|5 | 2]88]|a]3 ADM—=A ejel titiR]|e
EORB 82 2(D8 |3 |2 {E8 |5 | 2|F8|a}3 BeM—B ole|ltitin|e
Increment INC 6C|7{2|1|6]3 "R Ed] eleititiB|e
INCA |21 Aas1=A elef ti|®)e
INCB 5C | 2 1] B+1-8B eleftl1|®fe
Load Acmitr LDAA |86 {2 |29 [3 |2 A6 |5|2]B6| 4 3 M-A eie|ltltiR|e
oae jc6| 22|06 |3 |2|es 5t 2]F6| a3 M-8 eje|[titiR|e®
Or, Inclusive ORAA |8A | 2 | 219a 3] 2]|aals | 2(Bajda |3 AdM—~A olef1|tlR]|e
ORAB |CA| 2 |2 |DA|[3 | 2 {EA|S5 [2(|Fala |3 B+M—B elef1|t|R|e
Push Data PSHA 36 | 4 1| A—=Mgp. SP~1—~SP eio|/oojoie
PSHB 37| & 1| B—+Mgp,SP-1—SP ejo|oloioie
Pull Data PULA 32 | 4 1| SP+1—-SP, Mgp—~A e(ejefojoje
PULB 33| 4 1] SF+1—~+SP, Mgp—~B eje|eo[ojo |0
Rotate Left ROL) 69 {7 21|63 My S ele| 1@}
ROLA 49 |2 IA;{%J«!;,@-I;.IH%A efeit|ti®|!
ROLB 9 (2|18 ejelt|ti®]
Rotate Right ROR 66 |7 |21]6]3 "] ejeltit|®
RORA 46 | 2 | V| A} O - OO elelt|ti®}

< b7 - b&p
RORE 612 |1]8 elejt|t|®]?
Shift Lett, Anthmetc ASL 68 |7 |21]6 3] - eleft|tI®]!?
ASLA 482 |1]A [g-EIHIIE-o eje|tti®|!?
ASLB 5812|118 elelt|ti®|?
Shitt Right, Anthmetic ASR 67 {1 | 2{n {63 ™ - efe|t]|:|@®!?
ASRA ar 2 |1 |a}i -0 olelt|tI®|!

by og c
ASRB st {2 |1]8) ojelt|t @1
Shift Right, Logic LSR 64 7 {216 |3 "] - ele|lR|1|®]!?
LSRA @ |2 1]A °"Em§u"%’ elelRr|t|®|!?
LSRB sa |2 |1{8 elejRr|tI®|?
Store Acmitr STAA 97 |al2 AT |6 2|85 |3 A-M ejoft]|t|R|e
STAB 07 (42 (€E7 |6 j2|FTls}3 B-M ejejtitiR|e
Subtract SUBA 80 |2 |29 [3[2{a0}s |[2B0]a|3 A-M-A ool titit]
SUBB cof2l2{o0 |3 |2 e0fs|2|F0|a |3 B-M—B ejejtitit]t
Subract Acmitrs SBA 10} 2 1|A-B—~A ejejtitit|?
Subtr. with Carry SBCA 82| 22|92 |32 fAa2{s|2|82|4]3 A-M-C—~A o|oltit|t]t
SBCB c2|2|2{o2 |32 {e2f|s|2fF2]|a]3 B-M-C—8 ole|tit|t]!
Transter Acmitrs TAB 16 |2 1|A-8B ejo|tit|R|e®
TBA 17 2 118—+A eololt]|tiIR|eO
Test, Zoro or Minus ST s0f[7|2|mwm|s |3 M-00 elejtitiR|nR
TSTA awj2]1}(a-00 ele|tit|R|R
5T8 02| 1[8-00 eje|tltin|n

Figure 5-24
The 6800 instruction set.

5-48 l UNIT FIVE

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTND INHER S{aj3|2fr1}e
POINTER OPERATIONS MNEMONIC | OP| ~ | # | OP | ~ | = |OP | ~ | = 1OP !~ | #| 0P]~ | = | BOOLEAN/ARITHMETIC OPERATION | K| | [N|Z |V i{cC
Compars index Reg CPX sCl 3 |3jec|at2jacis |2fsc|s]|3 (Xp/XL) - (M/M s 1) o1e O]t @]
Dacrement index Reg DEX 28 1 4 1 X-1-X eje|ejt|e]e
Dacrement Stack Pntr 0ES 4 41 SP-1-—SP eloej|oejole}e
Increment Index Reg INX 14 1 X+1-X elelejtile]e
Increment Stack Patr INS N 4 1 SP+1-SP ejele|ofele
Load index Reg LDX CE] 3 |3 |0E}4 |2 JEE|6 |2 |FELS5 T3 M= Xy, (M) -X elei®|t]lR]e
Load Stack Pntr L0s BE | 3 | 3 9E |4 |2 AE|6 |2 ;BE]S5 |3 M —SPy, (M +1) ~SP, ele @ tiR|e
Store Index Reg §TX oFl s | 2€eF |7 | 2!fF 18 |3 Xy =M, X =(M+1) eie|@DItIR|e
Store Stack Pntr STS §F [51 2 [AF |7 2 |8F 8 (3 SPy =M. SP ~iM+1) ele|®|t|R}e
Indx Reg - Stack Pntr XS k1] 4 1 X-1-5P ejloejelejefe
Stack Pntr — Indx fleg TSX) 1 SP+1-=X ejoeloiojefe
JUMP ANO BRANCH RELATIVE iNDEX EXTNO INMER S1413(2311(0
OPERATIONS MNEMONIC {OP | ~ | = OP| ~ | = [O0P| ~{ =10P| ~ | = BRANCH TEST HltIN}Z{V]C
Branch Always BRA 20 4 2 None eloele|elele
Branch If Carry Clear BCC 24 4 2 c=0 elejie|oje|e
Branch if Carry Set 8CS 9 4 2 c=1 ejejejloejo|e
Branch if = Zero BEQ 27 | 4 2 Z=1 o|loejeiejojo
Branch if > Zero 8GE | 4] 2 N#V=(0 ojejejojo e
Branch It > Zero BGT] 4 2 Z4(NBVI=0 ejejejeje e
Branch if Higher BHI 2144 2 C+2 =0 eole|ojeloje
Branch If < Zero 8LE IF 4 2 Z+INTV)= elejo|ojo]e
Branch it Lower Or Same 8Ls 2314 2 C+2=1 ojejejejofe
Branch It < Zero BLT 0] 4 2 NEV=1 ejejejeofole
Branch !f Minus BMI B} 4 2 N=1 e ejejojo |0
Branch 1t Not Equal Zero BNE 26 4 2 2:0 ojlojo|ole]e
Branch If Overfiow Clear BVC 28 4 2 v=0 ejofojo|o]e
Branch if Overflow Set BVS 3|4 2 V=1 (EEEERR NN
Branch if Plus BPL 2A 4 2 N=0 o|lojo|[oeje|e
Granch To Subroutine 8SR 80 | 8 2 ele|ojojoie
Jump MP 6E | 4§ 2 17E (3 [3 See Soecial Operatrons eleiojeloe
Jump To Subroutine ISR ap| 8 2 80| @ 3 ejlojejejele
No Ogeration NOP n 2 1 Advances Prog. Catr. Onty ejejejejo]e
Return From loterrupt RT! 18 10 1
Aeturn From Subroutine RTS K] 5 1
Software Interrupt swi 3 Liz I See special Operations NN
Wart for Interrupt WAL 3E] 1 . @ ejejeje
CONOITIONS COOE REGISTER INHER BOOLEAN 5 14137214 |0 FinnimioN CODE REGISTER NOTES:
OPERATIONS MNEMONIC | oOP = = JOPERATION] H |1 | N Z |V ICT (Bit sex «f test s true and cleared otherwises
Clear Carry cLe ec |2 | o 0-cC oo e ele|n]| D Bitvi Test Resui: 10000000
Clear Interrupt Mask cL 113 2 1 0t e R je|eje e @ {Bit C) Test: Resuit = 00000000”
Clear Gverflow cLv 0A ? 1 09—V efe el efp |ef 3 (BitC) Test: Decimaivalue of most sigmficant BCD Characzer greater than nine?
Set Carry SEC 00 2 1 1=C o le ° ol e s . {Not cleared if previousty set.)
Set Interrupt Mask SEI oF 2 1 1ot e s o]l sie !l e (3 !Bitvi Test Operand = 10060000 prior to execution?
Set Overflow SEV 08 2 1 | -V ejle|elels e S (BiVI Test: Operand = 01111111 prior to execution?
Acmitr A =~ CCR TAP 06 2 1 A —~CCR —— @ P &) (BirV) Test: Set equal 1o result of N % C atter shift has occurred
CCR — Acmitr A TPA 07) | CCR ~A ° I ° l ° l ° i ° l. () (Bt N) Test: Sign bit of most signiticant tMS) byte of result = 1?
& (BiV) Test: 2's complement overflow from subtractior of LS bytes?
(& (BN Test: Result less than zero? (Bit 15= 1

LEGEND: 00 Byte= Zero: 79 (Al Load Condition Code Regster from Stack. (See Special Operations)

OP Operation Code (Hexadecimail; H Haif-carry fram bit 3; @ (B 1} Set when interrupt occurs. if previously set, a Non-Maskable tnterrupt is

- Number af MPU Cycles: . Interrupt mask required to exit the wait state.

= Number ot Program Bytes, N Negatwve Isign bit} @ {ALL) Set according to the contents of Accumulator A,

+ Arithmeuc Plus; 2 Zero (byte)

- Arithmetic Minus; \ Qvertiow. 2's camplement

. Boolean ANO; c Carry from bit 7
MSP Contents of memory iocahion R Reset Always
pointed 1o be Stack Pointer; s Set Always Figure 5_24

+ Bootean Inclusive OR; N Test and set f true, cleared otherwise

= Boglean Exclusive 0R: . Not Aftected (Continued)

M Complement of M; CCR Conditian Code Register

- Transter Into; L3 Least Significant

Q Bit = Zero: MS Most Significant

The 6800 Microprocessor — Part 1

Self-Test Review

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A disadvantage of direct addressing is that the operand must be in
the first bytes of memory.

The advantage of direct addressing is that only
bytes are required for each instruction.

Extended addressing can address bytes of memory.

A disadvantage of extended addressing is that each instruction
requires bytes.

Can extended addressing be used to address an operand in the first
256,, bytes of memory?

The most powerful addressing mode available to the 6800 is called
addressing.

Indexed addressing requires bytes for each instruc-

tion.

The second byte of an indexed addressing instruction is called the
address.

How is the address of the operand determined when indexed ad-
dressing is used?

Carefully examine the program shown in Figure 5-25. Determine
what the program does and fill in the comments column. What
number is loaded into the index register by the first instruction?

HEX

ADDRESS

HEX
CONTENTS

MNEMONICS/
HEX CONTENTS

COMMENTS

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

LDX #
00
50
pemeep- CLR, X
00
INX
CPX #
00
60
BNE

e 8

WA|

Figure 5-25

Program for Self-Test Review

5-49

5-50 [um Ve

37.

38.

39.

40.

41.

42,

43.

What location is cleared by the CLR, X instruction?

What is the number in the index register after the INX instruction is
executed for the first time?

The loop will be repeated until the number in the index register is

What does this program do?

Refer to Figure 5-24. What is the hexadecimal opcode for the LDAB
extended instruction?

How many MPU cycles are required by the INC, X instruction?

How many bytes in the LDS # instruction?

HEATHKIT

iﬂm:w The 6800 Microprocessor — Part 1
Answers

27. 2564,

28. Two.

29. 65,536,

30. Three.

31. Yes. Although direct addressing is normally used when the

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

operand is in the first 256,, bytes of memory, extended addressing
can be used also.

Indexed.

Two.

Offset.

The offset address is added to the contents of the index register.
0050¢.

0050,.

0051 6.

0060,.

The program clears memory locations 0050,¢ through 005F .
F64.

Seven.

Three.

5-52

UNIT FIVE

EXPERIMENTS

Perform Programming Experiments 7 and 8. You will find these experi-
ments in Unit 9. After you finish these experiments, return to this unit
and complete the Unit Examination.

The 6800 Microprocessor — Part 1

UNIT EXAMINATION

1.

Which of the following program segments will not clear both

accumulators?

A. CLRA
CLRB

B. CLRA
TAB

C. CLRB
TBA

D. CLRA
ABA

Which of the following contains an operation that can net be
performed directly on a byte in memory using a single instruc-

tion?

A. Increment, decrement, shift left arithmetically.
B. Clear, complement, compare.

C. Rotate left, negate, test for zero.

D. Shift right logically, rotate right, test for minus.

Which addressing mode is best suited for adding a list of num-

bers?

A. Direct.

B. Extended.
C. Indexed.
D. Relative.

5-53

5-54

UNIT FIVE

4. Which of the following program segments will sucessfully swap
the contents of accumulators A and B?

A. TAB
TBA

B. STAA
10
TBA
LDAB
10

C.

TAB
ABA

STAA
10
LDAB
10
TBA

5. Which of the following program segments will cause a branch if
the number in memory location 8310 is odd?

A. ROR
83
10
BCS
07

B. ASL
83
10
BCS
07

C.

RORA
BCS
07

LDAA
83

10
ROLA
BCS
07

Examine the following program segment:

CLRA

INCA
l BNE
FD

WAI

If an MPU cycle is 1 microsecond, how much time elapses from
the time this segment starts running until the WAI instruction is

fetched?

=R '

Approximately 8 microseconds.
Appreximately 2050 microseconds.
Approximately 1538 microseconds.
Approximately 3 microseconds.

HEATHKIT
CONTINUING
EDUCATION

The 6800 Microprocessor — Part 1 5-55

7. Which of the following instructions can be used to clear the Z

flag?

A. BEQ
B. BNE
C. NoOp
D. TAP

8. Which of the following instructions can be used to test the result
of the subtraction of unsigned binary numbers?

A. BGE.
B. BGT.
C. BCS.
D. BLT

9. Examine the following program segment:

LDX #
00
50
— DEX
BNE
— FD
WAI

How many times will the DEX instruction be executed?

A. Once

B. 50, times.

C. 65,536,,.

D. Thenumber of times will depend on the contents of memory

location 0050.

5-56

UNIT FIVE

HEX HEX MNEMONICS/

ADDRESS CONTENTS HEX CONTENTS COMMENTS
0010 4F CLRA Clear Accumulator A.
0011 70 TST Test
0012 00 20 the
0013 1€ 1E multiplier.

0014 27 8EQ If it is zero branch to wait.
0015 07 07

0016 7A DEC Otherwise decrement
0017 00 00 the

0018 1€ 1E muitiplier.

0019 9% ADDA Add the

001A 1F 1F multiplicand to the product.
0018 20 BRA Repeat the 1oop.

001C F4 F4

001D 3E WAL Wait.

001E 05 Muitiplier

001F 04 Multinlicand

Figure 5-26

This program multiplies by repeated

addition.

NOTE: Refer to the program shown in Figure 5-26 for questions 10
through 16.

10. What addressing mode does the TST instruction use?

11.

12.

A.
B.
C.
D.

Immediate
Direct.
Extended.
Indexed.

The BEQ instruction checks to see if the TST instruction set the:

A,
B.
C.
D.

Z flag
C flag.
H flag.
V flag.

The DEC instruction decrements the number in:

A.

B
C.
D

Accumulator A.
Memory location 001E.
Accumulator B.

The index register.

CONTINUING The 6800 Microprocessor — Part 1

13. Which instruction is executed immediately after the BRA instruc-

tion?

A. WAL
B. BEQ.
C. CLRA.
D. TST.

14. With the values given for the multiplier and multiplicand, how
many times will the main program loop be repeated?

A. Four times.

B. Five times.

C. Twenty times.
D. Twice.

15. After the program has been executed, memory location 001E will

contain:

A. 05
B. 044
C. 204
D. 004.

16. After the program has been executed, the product will appear in:

Memory location 001E.
Memory location 001F.
Accumulator A.
Accumulator B.

Dows

9-57

5-58

UNIT FIVE

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS HEX CONTENTS

0010 CE LDX #

0011 00 00

0012 00 05

0013 A6 praendme-| DAA, X

0014 20 20

0015 AB ADDA, X

0016 30 30

0017 A7 STAA, X

0018 40 40

0019 o8 INX

001A 8C CPX-#

0018 00 20

001C 15 15

0010 26 BNE

001E Fa F4

001F 3E WA}

Figure 5-27

Program for Questions 17 through 20.

NOTE: Refer to Figure 5-27 for Questions 17 through 20. Analyze the
program, determine what it does, and fill in appropriate comments.

17.

On the first pass through the main program loop, the LDAA, X
instruction takes its operand from memory location:

A. 0005.
B. 0020.
C. 0025.
D. 0014.

HEATHKIT

comnrlingtnc The 6800 Microprocessor — Part 1 5"‘59

18. On'the first pass, the ADDA, X adds the contents of what memory
location to accumulator A?

A. 0005.
B. 0030.
C. 0035.
D. 0016.

19. On the second pass through the program loop, the contents of
memory location:

A. 0021 are added to the contents of 0031 and the result is stored
in 0041.

B. 0026 are added to the contents of 0036 and the result is stored
in 0046.

C. 0025 are added to the contents of 0035 and the result is stored
in 0045.

D. 0020areadded tothe contents of 0030 and the resultis stored
in 0040.

20. How many times is the main program loop repeated?

A. 10, times.
B. 05, times.
C. 304 times.
D. 15 times.

5-60 | uniT Five

