HEATHKIT

CONTINUING
EDUCATION

A 8

Individual Learning

Program
MICROPROCESSORS
Unit 6
THE 6800 MICROPROCESSOR — PART 2
EE-3401
HEATH COMPANY] Copyright © 1977

Heath Company
BENTON HARBOR, MICHIGAN 49022 All Rights Reserved
Printed in the United States of America

6-2

HEATHKIT

UNIT SIX TG
ST
CONTENTS
Introduction ...t e 6-3
Unit Objectivesot i it e 6-4
Unit Activity Guide e 6-5
Stack Operationscoiiiiiiiiiiineniiiiiiiinnennn 6-6
Subroutines e 6-17
Input-Output (I/O) Operationsccoiiiiiineeeneennn.. 6-27
60803 w1 o P 6-37
Experiments 6-50
Unit Examination..............o e 6-51

———
HEATHKIT
IWCANH"O”I? The 6800 Microprocessor — Part 2 6‘3

Unit 6
THE 6800 MICROPROCESSOR — PART 2

INTRODUCTION

In the previous unit, you were introduced to the architecture and instruc-
tion set of the 6800 microprocessor. Much of the MPU’s capabilities were
discussed; however, three important areas were omitted. These include
the microprocessor’s stack operation, the use of subroutines, and the
interrupt capability. These capabilities are discussed in detail in this
unit. You are also introduced to input-output operations.

6-4

UNIT SIX

UNIT OBJECTIVES

When you have completed this unit, you will be able to:

1.

10.

Explain the difference between a cascade stack and a memory
stack.

Write simple programs that can store data in — and retrieve data
from — the stack.

Write programs that use the stack and indexing to move a list from
one place in memory to another.

Explain the operations performed by each of the following instruc-
tions: PULA, PULB, PSHA, PSHB, DES, INS, LDS, STS, TXS, and
TSX.

Define stack, subroutine, nested subroutine, interrupt, interrupt
vector, and interrupt masking.

Write programs that use subroutines and nested subroutines.

Explain the operations performed by each of the following instruc-
tions: JMP, JSR, BSR, and RTS.

Describe how the 6800 MPU performs input and output operations.
Draw flowcharts depicting the sequence of events that occur dur-
ing reset, non-maskable interrupt, interrupt request, software inter-

rupt, return from interrupt, and wait for interrupt.

Explain the operation performed by each of the following instruc-
tions: WAI, SWI, RTI, SEI, and CLIL

HEATHKIT 6-5

W The 6800 Microprocessor — Part 2
UNIT ACTIVITY GUIDE Completion

Time

Read Section on Stack Operations.

Complete Self-Test Review Questions 1-10.

Read Section on Subroutines.

Complete Self-Test Review Questions 11-20.

Read Section on Input-Output Operations.

Complete Self-Test Review Questions 21-27.

Read Section on Interrupts.

Complete Self-Test Review Questions 28-40.

Perform Programming Experiments 9 and 10.

Complete Unit Examination.

o o o o o o o o 0o 0o o

Check Examination Answers.

6-6

UNIT SIX

HEATHKIT

T0P OF

TO/FROM
ACCUMUL ATOR

DATA PATH

(

EIGHT

REGTSTERS

STACK

]
]
7771

T

Figure 6-1.
A cascade stack.

STACK OPERATIONS

In computer jargon, a stack is a group of temporary storage locations in
which data can be stored and later retrieved. In this regard, a stack is
somewhat like memory. In fact, many microprocessors use a section of
memory as a stack. The difference between a stack and other forms of
memory is the method by which the data is accessed or addressed. The
discussion will begin by considering a simple stack arrangement used in
some microprocessors. Then the more sophisticated stack arrangement
used by the 6800 MPU will be discussed.

Cascade Stack

Some microprocessors have a special group of registers (usually 8 or 16)
called a cascade stack. Each register can hold one 8-bit byte of data.
Because these registers are right on the MPU chip, they make excellent
temporary storage locations. If we need to free the accumulator for some
reason, we can store its contents in the stack. Later, if that piece of data is
needed again, we can retrieve the data from the stack. Of course, we could
also havefreed the accumulator by storing the data in memory. What then
is the advantage of the stack?

One advantage of the stack is the method by which it is accessed or
addressed. Recall that when a byte is stored in memory, an address is
required. That is to store the contents of the accumulator in memory a
2-byte or 3-byte instruction is required. Depending on the addressing
mode, the last one or two bytes is the address. Later, if the byte is
retrieved, another instruction is required that also has an address.

An advantage of the stack is that data can be stored into it or read from it
with single-byte instructions. That is, the instructions used with the stack
do not require an address. Therefore, they are single-byte instructions.

Figure 6-1 shows an 8-register stack similar to that found in some micro-
processors. This is called a cascade stack because of the method by which
data is loaded and retrieved. All data transfers are between the top of the
stack and the accumulator. That is, the accumulator communicates only
with the top location on the stack. Data is transferred to the stack by a
special instruction called PUSH.

HEATHKIT
" The 6800 Microprocessor — Part 2 6"7

The PUSH Instruction. Figure 6-2 illustrates how the PUSH instruction
places data in the stack. The number 01,4 is in the accumulator and we
wish to temporarily store it. While we could store the number in memory,
this would require a 2-byte or a 3-byte instruction. So instead, we use the
PUSH instruction to place this number in the stack. Notice that the
number is placed in the top location of the stack as shown in Figure 6-2A.
The number remains there until we retrieve it or until we push another
byte into the stack.

Figure 6-2B shows what happens if, at some time later, we push another
byte into the stack. Notice that the accumulator now contains 03 . If the
PUSH instruction is executed, the contents of the accumulator are
pushed into the top of the stack. To make room for this new number, the
original number 01,4 is pushed deeper into the stack.

Figures 6-2C and 6-2D show two more numbers being pushed into the
stack at later points in the program. Notice that new data is always
pushed into the top of the stack. To make room for the new data, the old
data is pushed deeper into the stack. For this reason, this arrangement is
often called a push-down or cascade stack. The name cascade stack
comes from the characteristic cascading of data down through the stack
as each new byte is pushed in at the top.

ACCUMULATOR ACCUMULATOR ACCUMULATOR ACCUMULATOR
[c'0'0"0'0'0'0 1] lo'o’'0'0'0'0'1"1] [o'o’0’0'0™1 1] fo'o'0’0"17 17111
lo'o'0'o'0'0'0"1] [0'0'0'0'0'0"11] lo'o'o’0’0"17111] fo'o'o’o’ 1171

Z A4

fo'o’'0’0'0’0’171] X

lo'o’0'0'0' 1171

A4

LIPOLPS PR LRl

(0000000 11}

IOOOOOOOI'

jo'c'0'0’'0'0'0'1}

STACK

Figure 6-2. \
Pushing data into the stack.

6"8 [UNIT SiX

HEATHKIT

00001111 00000111 fo'00 0001 1] 000
00000111} |oofooof01f|i 0000000 ! T T

The PULL Instruction. The MPU retrieves data from the stack by using
the PULL instruction. In some microprocessors, this is referred to as a
POP instruction.

Figure 6-3 illustrates how data can be pulled (or popped) from the stack.
Figure 6-3A shows the stack as it appeared after the last push operation.
Notice that it contains four bytes of data. The last byte of data that was
entered is at the top of the stack.

The PULL instruction retrieves the byte that is at the top of the stack. As
this byte is removed from the stack, all other bytes move up, filling in the
space left by that byte. Figure 6-3B illustrates how OF 4 is pulled from the
stack. Notice that 07,5 is now at the top of the stack.

Figures 6-3C and 6-3D show how the next two bytes can be pulled from
the stack. In each case, theremaining bytes move up in the stack, filling in
the register vacated by the removed byte.

If you compare Figures 6-2 and 6-3, you will notice that the data must be
pulled from the stack in the reverse order. That is, the last byte pushed
into the stack is the first byte that is pulled from the stack. Another name
for this arrangement is a last-in/first-out (LIFQ) stack.

ACCUMULATOR ACCUMULATOR ACCUMULATOR ACCUMUL ATOR
00001111 00000111 00000011

i) 0 i

00000011 00000001
(S
00000001 SRR A

STACK
STACK
STACK

Figure 6-3.
Pulling data from the stack.

STACK

—_——
HEATHKIT
CONTINUING
EDUCATION

The 6800 Microprocessor — Part 2

=

Memory Stack

While a cascade stack is valuable, it does have some limitations. For one
thing, the number of registers is generally quite limited, with eight being
typical. If more than eight pieces of data are pushed into the stack, the
“older” bytes are pushed out the bottom and are lost. Also, the readout of
the stack is destructive. When a byte is pulled from the stack, it no longer
exists in the stack. This is fundamentally different from reading a byte
from memory.

Because of these limitations the 6800 MPU does not use a cascade stack.
Instead, a section of RAM can be set aside by the programmer to act as a
stack. This has several advantages. First, the stack can be any length that
the programmer requires. Second, the programmer can set up more than
one stack if he likes. Third he can address the data in the stack using any
of the instructions that address memory.

Stack Pointer. Recall that the 6800 MPU has a 16-bit register called the
stack pointer. In a memory-type stack, the stack pointer defines the
memory location that acts as the top of the stack.

The cascade stack considered earlier generally does not require a stack
pointer. The top of the stack is determined by hardware. During push and
pull operations, the data bytes actually move from one register to another.
That is, the top of the stack remains stationary and the data moves up or
down in relation to the stack.

In the memory stack, data cannot be easily transferred from one location
to the next. Therefore, instead of moving data up and down in relation to
the stack, it is much easier to move the top of the stack in relation to the
data.

Generally, when the microprocessor-based system is being planned, a
section of RAM is reserved for the stack. This should be a section of RAM
that is not being used for any other purpose.

Once this is done, the stack can be set up by a program. The top of the
stack is established by loading an address into the stack pointer. For
example, suppose we wish to establish address 01F9,4 as the top of the
stack. The following instruction could be used:

LDS#
01
F9

6-9

6-10

CONTINUING
UNIT SIX EDUCATION
$
This loads the address 01F9,4 into the stack pointer and establishes that
address as the top of the stack. However, as you will see, the top of the
stack moves each time data is pushed into — or pulled from — the stack.
The PUSH Instructions. The 6800 MPU has two push instructions, PSHA
and PSHB. These single-byte instructions push the contents of their
respective accumulator onto the stack.
Figure 6-4 shows the effects of the PSHA instruction. Before the instruc-
tion is executed, the stack pointer contains the address 01F9,¢ as a result
of a previous LDS instruction. Accumulator A contains a data byte (AA).
If the PSHA instruction is now executed, the contents of accumulator A
are pushed into memory location 01F9,s. Then, the stack pointer is
automatically decremented to 01F8,s. This automatically moves the top
of the stack as shown.
MPU 1 RAM
STACK POINTER 1
o7 F 91 : ~7]01F5
H 01F6
! 01F7
A a] '
ACCUMULATOR A : ~JO1F8 10p of
: O1F9=STACK
! “{O1FA
' 01FB
(A) serore
Figure 6-4. STACK POINTER !
Executing the PSHA instruc- o 1 F 8 : 7]O1F5
tion. i O1F6
__ H ~ - JO1F7
A A] o T0P OF
ACCUMULATOR A H O1F8=sTACK
\ A A |01F9
i T7101FA
: T 101FB
]

(B) arrer

If you look at your Instruction Set Summary card, you will see that the
operation is described as follows:

A—)MSP,SP—1—>SP

This means that the contents of the A accumulator are transferred to the
memory location specified by the stack pointer. Also, the contents of the
stack pointer are replaced by the previous contents of the stack pointer
minus one. In other words, after the accumulator-to-stack transfer takes
place, the stack pointer is decremented by one.

mnful'o"i? The 6800 Microprocessor — Part 2

To reinforce the idea, assume that at some later point in the program, the
MPU executes a PSHB instruction. This is illustrated in Figure 6-5. Before
PSHB is executed, the B accumulator contains BB,¢ and the stack pointer
is still pointing to 01F8,;,. When PSHB is executed, the contents of
accumulator B are pushed onto the stack and the stack pointer is de-
cremented to 01F7 .

The PULL Instructions. Data bytes are removed from the stack with the
pull instruction. The 6800 MPU has two pull instructions. PULA allows
the MPU to pull data from the stack into the A accumulator. PULB
performs a similar operation except the data byte goes into accumulator
B.In each case, data is pulled from the top of the stack. Thus, the data byte
available to the MPU is the last byte that was placed in the stack.

]
STACK POINTER MPU : RAM
O 1 F 8 : “JoiFrs
: oiFe
i O1F7 105 of
ACCUMULATOR B : O1F8=STACK
H A A |01F9
H - {o1FA
! 01FB
(A) serore
STACK POINTER :
(0] 1 F 7 : : ,0]F5
: _JOTFE 1gp or
: o1 7=
ACCUMULATOR B : B B |OIF8
i A A |OIF9
i T lo1FA
i JoiFe
]
(B) arrer
Figure 6-5.

Executing the PSHB instruc-
tion.

6-11

6-12

UNIT SIX

HEATHKIT
CONTINUING

For example, Figure 6-6A shows the stack as we left it after the last push
instruction. Figure 6-6B shows what happens if the PULA instruction is
executed. First, the stack pointer is automatically incremented by one to
01F8,¢. Then the contents of the memory location designated by the stack
pointer are transferred to accumulator A. Thus, BB,; goes into ac-
cumulator A. Notice that the stack pointer is incremented before the byte
is pulled from the stack.

To be certain you have the idea, consider what happens if the PULB
instruction is now executed. Figure 6-6C shows that the stack pointer is
automatically incremented to 01F9,;. The contents of that location are
then pulled into accumulator B. This operation is described on your
Instruction Set Summary card as:

SP"'].—)SP,MSP—)B

splb o1 F 7} Z A O1FS
A 01Fe

QT
B B |oiFs
; A A loiFg
ACCB 0 01 FA
A. L 01F B

sl 01 F 8 |

7 01FS

7/ A01F 6
QlF7
01F8 -—
01F9
7101 FA
7/A01FB

C. puLs execuTeD

Figure 6-6.
Executing PULL instructions.

HEATHKIT
CONTINUING
EDUCATION

The 6800 Microprocessor — Part 2

————

Using the Stack. Figure 6-7 summarizes all of the instructions that di-
rectly affect stack operations. The push and pull instructions were intro-
duced in this unit while the other instructions were discussed briefly in
the previous unit. Find these instructions on your Instruction Set Sum-
mary card. The push and pull instructions are listed with the Ac-
cumulator and Memory Operations. Those instructions that affect the
stack pointer are listed under Index Register and Stack Pointer Opera-

ions.
tions ADDRESSING MODES

STACK AND STACK POINTER IMMED | DIRECT | INDEX | EXTND | INHER | BOOLEAN/ARITHMETIC OPERATION
(All register labels
OPERATIONS MNEMONIC |OP|~ | #]OP]~ J#|OP |~ 1 =|OPI~ | #|OP|~ | # refer to contents)
Push Data PSHA 36)af A— M, SP -1 SP
PSHB a7 ja B — M, SP -1 SP
Pull Data PULA 3204 SP + 1= SP, Mg, — A
PULB alal SP + 1 SP, Mg, —» B
Decrement Stack Pntr DES 7N O SP-1-SP
Increment Stack Pntr INS 3134 |1 SP + 1 SP
Load stack Pntr LDS BEJ3|3)9Ej4 f2jAE]s f2fBE]|s5]S M— SP,, (M~ 1) — SP,
Store Stack Pntr STS oF s J2]AaF}7 j2]BFfe6 SPy — M, SP. . — (M + 1)
Indx Reg — Stack Pntr XS 3514 | 1 X-1-SP
Stack Pntr — Indx Reg TSX (4} SP+1-X
Figure 6-7.

Following are some examples of how the stack can be used. First consider
a trivial example. Using only stack operations, swap the contents of
accumulators A and B. Assuming the stack pointer has already been set
up, the program segment might look like this:

PSHA
PSHB
PULA
PULB

Assume that accumulator A initially contains AA ; and that accumulator
B contains BB The first instruction pushes AA,; onto the stack. Next
BB,s is pushed onto the stack. The third instruction pulls BB, from the
top of the stack and places it in accumulator A. Finally, the last instruc-
tion pulls AA ¢ from the stack and places it in accumulator B. As you can
see, the contents of the two accumulators are reversed. The following
routine accomplishes the same thing with one less instruction:

PSHA
TBA
PULB

Stack and stack pointer in-

structions.

6-13

6-14

UNIT SIX

HEATHKIT
CONTINUING
EDUCATION

== ——

Now look at a more complex example. Assume that you wish to transfer
16,, bytes of data from one place in memory to another. As you saw in the
previous unit, this type of problem is a good candidate for indexing.
However, indexing alone becomes cumbersome if the two lists are over
FF,s memory locations apart. The reason for this is that the offset address
can only extend FF,¢ locations above the address in the index register.

In this example, assume you wish to move the data in memory locations
0010,, through 001F 4 to locations 01F0,4 to 01FF,s. While this could be
accomplished using indexing alone, the program becomes unnecessarily
complicated. Two separate indexes must be maintained; one for loading
data from 0010,; through 001F 4, the other for storing data in 01F0,
through 01FF,4. A simpler approach is to use indexing for one operation
and the stack capability for the other operation. That is, we could load
data from the lower list using indexing and store it in the upper list using
the stack capability.

A program that does this is shown in Figure 6-8. The first instruction
loads the stack pointer with address 01FF 4. This is the address of the last
entry in the new list that will be formed. Recall that the new list is to be
written in locations 01F0,s through 01FF,s. Once location 01FF 4 is estab-
lished as the top of the stack, we can enter data into the new list simply by
pushing data onto the stack. Because the stack pointer is decremented
with each push operation, we must push the last entry in the list onto the
stack first.

HEX HEX MNEMONICS/ COMMENTS

Figure 6-8.

Moving a list of data using both
indexing and stack operations.

ADDRESS

CONTENTS

CONTENTS

0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
002A
0028
002C
002D
002E
002F

Load the stack pointer immeaiately with the
address of the last entry in the

new list.

Load the index register immediately with the
address of the last entry in the

onginal list.

Load accumulator A indexed from

the oniginal hist.

Push the contents of accumulator A into the new list.
Decrement the index register.

Compare the contents of the index register
with one !ess than the address of the

first entry in the original list

If no match occurs. branch back

this far.

Otherwise. wart.

The second instruction loads the index register with the address of the
last entry in the original list. This is necessary for the reason pointed out
above.

Next, the A accumulator is loaded using indexed addressing. Since the
offset address is 00,5, the accumulator is loaded with the contents of
001F . That is, the last entry in the original list is loaded into ac-
cumulator A.

——
HEATHKIT
muc:r“b"nc The 6800 Microprocessor — Part 2 6'1 5

=

The PSHA instruction then pushes the contents of accumulator A onto
the stack. Thus, the last entry in the original list is transferred to location
01FF . In the process, the stack pointer is automatically decremented to
01FEs.

The indexregister is decremented to 001E,¢ by the next instruction. Then,
the CPX instruction compares the index register with 000F 4 to see if all
entries in the list have been moved. If no match occurs, the MPU branches
back and picks up the next entry in the list. The loop is repeated over and
over again until the entire list has been moved to its new location.

Other uses of the stack will be revealed later. However, even if the stack
did nothing more than has already been explained, it would be a very
useful capability to have. But as you will see, the MPU uses the stack in
several other ways that makes this capability even more important.

Self-Test Review
1. What is a stack?
2. What is a cascade stack?
3. What is a memory stack?
4. Which type of stack does the 6800 MPU use?
5. What is the name of the instruction that stores data in the stack?
6. What type of instruction is used to retrieve data from the stack?
7. What is the purpose of the stack pointer?

8. ThePUSH instruction transfers data from one of the accumulators
to

9. The PULB instruction transfers data from the top of the stack to

10. Refer to Figure 6-8. How can we change this program so that the
new list is placed in addresses 0220, through 022F?

6-16

UNIT SIX

Answers

10.

A stack is a group of registers or a section of memory that is used as
a last-in, first-out memory.

A cascade stack is a group of hardware registers (usually 16 or less)
that is used as a last-in, first-out memory.

A memory stack uses a section of RAM as a last-in, first-out mem-
ory.

A memory stack

PUSH

PULL

The stack pointer indicates the address of the top of the stack.
The top of the stack.

Accumulator B.

By changing the first instruction to: LDS# 022F .

HEATHKIT

mu% The 6800 Microprocessor — Part 2

SUBROUTINES

A subroutine is a group of instructions that performs some limited but
frequently required task. A given subroutine may be used many times
during the execution of the main program. In many cases, the easiest way
to write a program is to break the overall job down into many simple
operations, each of which can be performed by a subroutine.

Because subroutines are used so frequently, most microprocessors have
special capabilities that allow them to handle subroutines efficiently. In
this section, these capabilities will be examined. The discussion will start
with the instructions associated with subroutines.

The 6800 MPU has three instructions that are used to handle subroutines.
They are:

Jump to Subroutine (JSR)
Branch to Subroutine (BSR)
Return from Subroutine (RTS)

Each of these will be discussed in this section. One other instruction that
has not yet been mentioned will also be discussed. It is the Jump (JMP)
instruction. While not used exclusively with subroutines, the JMP in-
struction makes an excellent introduction to the Jump to Subroutine (JSR)
instruction. Therefore, the Jump (JMP) instruction will be discussed first.

Jump (JMP) Instruction

This instruction allows the MPU to jump from one point in a program to
another. In this respect, it is somewhat like the Branch Always (BRA)
instruction that was discussed earlier. The difference is the method of
addressing used. Recall that the BRA instruction used relative address-
ing. This has the advantage that only a 2-byte instruction is required. Its
disadvantage is that the branch must be within the range of — 128 bytes to
+127 bytes of the program count.

6-17

6-18 | unit six

appress . MEMORY
FCO0O0y¢ ™

JIMP
FC
FFEO gbdt=_ 00 J

NP R el

Figure 6-10.
Using the JMP instruction to
repeat a program.

O'1'1'1 111 0| !MmpP OPCODE i7E16’
ADDRESS TO WHICH
THE MPU

WILL JUMP.
Figure 6-9.
Format of the JMP instruction
using extended addressing.

The JMP instruction can use either the indexed or the extended address-
ing mode. It does not use relative addressing. When using extended
addressing, the format of the JMP instruction is as shown in Figure 6-9.
Three bytes are required; the opcode followed by the 2-byte address to
which the MPU is to jump. Since a 16-bit address is given, the jump may
be to any point in the 65,536,, byte memory range. This address is loaded
into the program counter so that the next opcode is fetched from that
address. The previous contents of the program counter are lost. Thus, the
MPU starts executing instructions from a new point in memory.

. PROGRAM TQO BE

f REPEATED

An example of how the JMP instruction can be used is shown in Figure
6-10. Here, a long program is to be repeated over and over again. This is
typical of applications such as controllers that repeat the same operations
endlessly. The program is contained in the upper 1k bytes of memory. It
starts at location FC00,; and ends at FFEO,, Notice that the last instruc-
tion is JMP FC00,s. This sends the program back to its beginning so that
the loop is repeated endlessly.

MEMORY
A000
MEMORY
D T
ADDRESS
0070 IMP
0071 AQ
NN
0072 00
0073
Rt
MAIN SUBROUTINE
PROGRAM
JMP
00
I3]

Figure 6-11.
Using the JMP instruction to
call a subroutine.

HEATHKIT
CONTINUING
EDUCATION

The 6800 Microprocessor — Part 2 6'1 9

Another possible use of the JMP instruction is shown in Figure 6-11.
Here, the main program is in the lower memory locations shown on the
left. The main program requires a subroutine that is up at address A000
(shown on the right). The JMP instruction at address 0070 sends the MPU
off to the subroutine as shown. The last instruction in the subroutine is
another JMP instruction that sends the MPU back to the main program.

Jumping to a subroutine is often referred to as calling a subroutine. While
we can call a subroutine using the JMP instruction, this approach has a
distinct problem. What happens if the main program wants to call the
same subroutine more than once? That is, suppose a situation like that
shown in Figure 6-12 is required. Here, the main program (on the left)
wishes to call the subroutine (on the right) at two separate points. Jump-
ing to the subroutine is no problem. We can do that as many times as we
like, using the instruction JMP A000. The problem is: how do we get back
from the subroutine to the main program? The first time through the
subroutine, the MPU should return to address 0073. The second time
through, the MPU should return to address 0093.

A programmer could get around this problem by changing the last in-
struction in the subroutine before each call or by constructing a table of
return addresses, etc. However, most microprocessors have some instruc-
tions that solve this problem for us. The following section will discuss the
6800 MPU’s solution to this problem.

MEMORY
1
ADDRESS .M_EMORY,‘
P ADDRESS
0070 JMP s
0071 A O 0oo
0072 00
0073
e)

MAIN
PROGRAM

SUBROUTINE

0090 JMP

0091 A O
0002 0 0
0093
7 3
55] THE
2.2 PROBLEM
? 9
b ot 2N
L

.

Figure 6-12.
The JMP instruction cannot
handle situations like this one.

HEATHKIT
CONTINUING
EDUCATION
—_————

6-20 | uniT six

JSR and RTS Instructions

If you refer to Figure 6-12 again, you will see that this problem arises
because the old program count is not saved when the MPU jumps from
one location to the next. However, the 6800 MPU has an instruction that
will not only jump to a subroutine, it will also cause the old program
count tobe stored away. This instruction is called the Jump to Subroutine
(JSR) instruction. Its format is exactly the same as the JMP instruction but
its execution is different.

Figure 6-13 shows how the earlier problem can be solved using the JSR
instruction. Notice that the two JMP instructions in the main program
have been replaced by JSR instructions. Notice also that the last instruc-
tion in the subroutine is a Return from Subroutine (RTS) instruction.
These new instructions ease the problem of calling the subroutine.

MEMORY
P4
MEMORY
ADDRESS M~~~ ADDRESS
o070l JSR A00O
0071 A O
0072 00
0073
= SS——
R

MAIN
PROGRAM

SUBROUTINE

0090 JSR
0091 A O
0092 00

0093
i ‘ \ RTS
e~

Figure 6-13.
The JSR and RTS instructions
can be used to handle this situ-
ation.

HEATHKIT

EDUCATION The 6800 Microprocessor — Part 2

=t

When the first JSR instruction is executed, the subroutine address A000,4
is placed in the program counter. However, just prior to this, the program
counter was incremented to the address of the next instruction in se-
quence. That is, the program counter was advanced to 0073, while the
contents of address 0072,; were being retrieved. This count (0073,4) is
automatically pushed onto the stack. By saving the old program count,
the MPU can tell where to return after the subroutine is finished. As soon
as the old program count is tucked away safely in the stack, the sub-
routine address A000,¢ is placed in the program counter. Thus, the MPU
fetches the next instruction from address A000,.

Notice that the last instruction in the subroutine is an RTS instruction.
When the MPU encounters this single-byte instruction, it will jump back
to the point where it left off in the main program. It does this by pulling
the old program count (0073,5) from the stack and placing it in the
program counter. Consequently, the next instruction will be fetched from
address 0073,¢. As you can see, this returns the MPU to the correct point
in the main program.

Notice that the programmer does not specify a return address at the end of
the subroutine. The return address is automatically pulled from the stack.
This allows us to call the subroutine repeatedly from several different
points in the main program.

Figure 6-13 shows that the subroutine is called again by the JSR A000
instruction in location 0090,. As this instruction and address are de-
coded, the program count is incremented to 0093,¢. This program count is
pushed onto the stack. Then A000, is placed in the program counter.
Thus, the MPU jumps off to the subroutine. When the subroutine is
finished, the RTS instruction causes the old program count to be pulled
from the stack into the program counter. This causes the MPU to jump
back to address 0093,; which contains the next instruction in the main
program.

6-21

6-22 [UNIT SIX

Nested Subroutines

Figure 6-14 shows a situation in which the main program calls sub-
routine A. In turn, subroutine A calls subroutine B. In this situation,
subroutine B is called a nested subroutine. That is, a nested subroutine is
a program segment that is called by another subroutine. If control is to be
eventually returned to the main program, two program counts must be
saved. Figure 6-14 shows how the two program counts are saved in the
stack.

At the start of the main program, the stack pointer is loaded with the
address of the area in memory that has been set aside to act as the stack. If
no stack instructions have been executed when the main program arrives
at the first JSR instruction, the stack pointer will still be pointing to where
it was originally set. The contents of the stack are of no interest until this
point.

STACK STACK STACK
i AamS P 06
00
8 A
FOOO
ADDRESS
0087 JSR JSR
0088 cCo F O
0089 00 00
008 A »
RTS N RTS
SUSROUTINE SUBROUTINE
A B
MAIN
PROGKAM
S P
Figure 6-14.

Handling nested subroutines.

P

HEATHKIT
EDUCATION The 6800 Microprocessor — Part 2 6-23

—_———u]

When the main program reaches the JSR instruction, the program count is
advanced to the address of the next instruction in sequence (008A,g).
When the JSR instruction is executed, this address (008A,s) is pushed
onto the stack as shown. The low order byte goes in first, followed by the
high order byte. In the process, the stack pointer is decremented twice.
Finally, the new address (C000,¢) is placed in the program counter. This
causes the MPU to jump off to subroutine A which starts at C000,.

Notice that halfway through subroutine A, subroutine B is called. Con-
sequently, the return address in subroutine A (C006,;) must be saved.
That is, when the program reaches the JSR instruction in subroutine A,
the return address (C006,¢) is pushed onto the stack as shown. Notice that
there are now two return addresses in the stack. The starting address of
subroutine B (F000,g) is then placed in the program counter and the MPU
jumps off to this subroutine.

Subroutine B has no nested subroutines of its own, so the program flow is
through the subroutine as shown. The last instruction in subroutine B is
the RTS instruction. At this point, the MPU pulls the return address
(C006,¢) from the top of the stack and places it in the program counter.
This causes the MPU to jump back to the instruction at address C006,¢ in
subroutine A.

The remainder of subroutine A is then executed down to the RTS instruc-
tion. This instruction causes the MPU to pull the next address (008A)
from the stack and place it in the program counter. Notice that this sends
the MPU back to the main program.

For simplicity, a single level of subroutine nesting is shown in this
example. However, in practice, many levels of nesting may be used. For
example, subroutine B could call subroutine C; etc. Any level of nesting
can be used as long as enough memory is set aside for the stack. Re-
member, each return address requires two bytes in the stack.

Branch to Subroutine (BSR) Instruction

Quite often, the subroutine we wish to call is within the —128,,to +127,,
byte range of the relative address. When it is, we can save one byte by
using the Branch to Subroutine (BSR) instruction. The execution of BSR
is identical to that of JSR except that relative addressing is used. The old
program count is saved in the stack before the branch occurs. Thus, the
RTS instruction at the end of the subroutine will cause the old program
count to be restored.

6-24

UNIT SIX

'HEATHKIT

Summary of Subroutine Instructions

CONTINUING

Figure 6-15 shows the four instructions discussed in this section. Notice
that the BSR instruction uses relative addressing. The JMP and JSR
instructions can use either indexed or extended addressing. The RTS
instruction uses inherent addressing since its address is pulled from the

top of the stack.

Find these instructions on your Instruction Set Summary card. The
operations performed by these instructions are illustrated under ““Special
Operations” on the back of the card. Also, Appendix A of this course
gives a concise description of the operations performed by each of these

instructions.

JUMP AND BRANCH RELATIVE| INDEX EXTND INHER

OPERATIONS MP{EMONIC OP |~ |#|OP]|-|#]|OP]-|#|OP|-|#

Branch To Subroutine BSR 8D 8 12

Jump JMP 6E § 4 217 }3 3

Jump To Subroutine JSR AD s | 2}BD]9]33

Return From Subroutine RTS 39 s |1
Figure 6-15.

Subroutine and jump instruc-

tions.

HEATHKIT

The 6800 Microprocessor — Part 2

Self-Test Review

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

What is a subroutine?
What addressing modes can the JMP instruction use?
How does the JMP instruction differ from the BRA instruction?

How does the execution of the JSR instruction differ from that of the
JMP instruction?

Why is the program count saved when the JSR or BSR instructions
are executed?

Where is the program count saved?
How is the stack pointer affected by the JSR instruction?

Generally, the last instruction in the subroutine will be a
instruction.

What is a nested subroutine?

How is the stack pointer affected by the RTS instruction?

6-25

HEATHKIT
6-26 | uniT six CONTINVING

Answers

11. A subroutineisa group of instructions that performs some specific,
limited task that is used more than once by the main program.

12. Indexed and extended.
13. Since the BRA instruction uses relative addressing, it can branch
only in a —128,, to +127,, byte range. The JMP instruction uses

indexed or extended addressing. Therefore, it can jump to any
point in memory.

14. When the JSR instruction is executed, the program count is saved
in the stack.

15. The program count is saved so that when the subroutine is finished,
the MPU can return to the point it left off.

16. The program countis pushed into the top two locations of the stack.

17. The stack pointer is automatically decremented twice as the pro-
gram count is pushed onto the stack.

18. Return from Subroutine (RTS).

19. When subroutine A calls subroutine B, subroutine B is said to be
nested.

20. The stack pointer is automatically incremented twice as the old
program count is pulled from the stack.

ki The 6800 Microprocessor — Part 2 | 6-27

INPUT — OUTPUT (I/O) OPERATIONS

A full explanation of input-output (I/O) operations will be given in the
next units, but a brief introduction to I/O is necessary at this point. In this
section, you will learn what is involved in sending data to — or taking
data from — the MPU.

To be useful, a microprocessor system must accept data from the outside
world, process it in some way, and present results to the outside world.
The input device may be nothing more than a group of switches while the
output device can be as simple as a bank of indicator lamps. On the other
hand, a single microprocessor might handle several teletypewriters,
printers, papertape machines, etc. The point is that the I/O requirements
can vary greatly from one application to the next. This section will be
concerned with the simplest form of I/O operations.

In the short history of microprocessors, two distinctly different methods
have been developed for handling I/O operations. In some microproces-
sors, I/O operations are handled by I/O instructions. These microproces-
sors generally have one input instruction and one output instruction.
When the input instruction is executed, a byte is transferred from the
selected I/O device to a register (usually one of the accumulators) in the
MPU. The I/O device is selected by sending out a device selection byte on
the address bus. By using an 8-bit byte for device selection, the MPU can
specify up to 256,, different I/O devices. Of course, no microprocessor
system uses that many devices, but the capability is there. The output
instruction causes a data transfer from the accumulator to the selected I/O
device. While this method of handling I/O operations is used in many
microprocessors, the 6800 MPU uses a different technique.

The other method for handling I/O operations is to treat all I/O transfers as
memory transfers. This is the method used by the 6800 MPU and many
other microprocessors. In fact, even those microprocessors that have I/O
instructions can ignore those instructions and handle I/O operations as
memory transfers.

The 6800 MPU has no I/O instructions. An I/O device is assigned an
address and is treated as a memory location. For example, assume that an
input keyboard has been assigned an address of 8000,,. We can input data
into accumulator A by using the instruction:

LDAA 8000,

6-28

UNIT SIX

HEATHKIT

Figure 6-16. 1o
I/O to the mi-

crocomputer. MICRO COMPUTER
------------- - - - - -
QUTSIDE WORLD

Adding

By the same token, an output display may have been assigned the address
9000,. In this case, we can output from accumulator B by using the
instruction:

STAB 90004.

Asyou can see, theI/O device is treated as a memory location. The system
block diagram shown in Figure 6-16 shows how an I/O device is con-
nected to the microcomputer. Notice that both the data bus and the
address bus connect to the I/O interface. As you will see in the next unit,
the interface can consist of an address decoder, an output or input latch,
and buffers or drivers.

WICRO-
PROCESSING]
UNLT

| (vpy)

ADDRESS RAM

3us CATA

e BUS

ROM

ST O Iy

INTERFACE

/0
DEVICE

The address decoder monitors the address bus and enables the interface
circuitry whenever the proper address is detected. This prevents the I/O
interface from interfering when data is being transferred between mem-
ory and the MPU.

The 1/O interface will generally have an output latch if it is to be used for
an output operation. Thereason for this is that the data from the MPU will
appear on the data lines for only an instant (usually less than one mi-
crosecond). By storing the output data in a latch, the I/O device is given a
much longer period of time to examine and respond to the data.

Buffers or drivers are also included in the I/O interface. As you will see
later, these are frequently necessary when several different circuits are
sharing the same bus.

———
HEATHKIT
IDII(ATIO"NG The 6800 Microprocessor — Part 2 6'29

. —_—cs]

Output Operations

Figure 6-17 shows a simplified output circuit. Here, the output deviceisa
- bank of eight light emitting diodes (LEDs). Enough detail is shown to
illustrate how an output operation can be performed. The address de-
coder monitors the address bus, looking for the address 9000,¢. It also
- monitors some of the control lines that connect to the MPU. One of those
lines is called a read-write line. It goes to its low state when a write
(output) operation is initiated by the MPU. The other control lines will be
discussed in the next unit.

D () e

—]

8-BIT ouTPUT

DATA DATA
FROM MPY LATCH
AND

——e] DRIVERS
D 7 et

ENABLE

A et

16-BIT
ADDRESS
FROM MPU

ADDRESS
DECODER
19000y ¢}

Ay 5 Figure 6-17.
ouTPUT . ips N
INTERFACE Simplified output circuit.

|
el

CONTROL
SIGNALS
FROM MPU

L

- Notice that the output of the address decoder is used to enable the output
data latch and drivers. When these are enabled, the byte on the data lines
is stored in the latch. The data bits stored in the latch cause the appro-

- priate LEDs to light up. By outputting appropriate bit patterns, the MPU
can cause different binary numbers to be displayed.

- Notice that the address decoder (and therefore the display) is given the
address 9000,,. We can output data to the display in several different
ways. For example, we can load the appropriate pattern to be displayed
into accumulator A. Then by executing a ‘‘store accumulator A” ex-
tended instruction, we can transfer the contents of the accumulator to the
display. The instruction would be: STAA 9000,,. Or, we could output
data from accumulator B by using the instruction: STAB 9000,.

6-30

UNIT SIX

0 o]

DATA BUS

T0 MPU

-~

In either case, the address 9000, goes out on the address bus for a brief
interval of time. The address decoder recognizes this address. At the
same time, the control lines indicate that an output operation is called for.
In particular, the read-write line goes low. This causes the address de-
coder to enable the output data latch for an instant. Simultaneously, the
8-bit data byte appears on the data bus. The output latch stores the data
byte. The data appears at the input of the latch for less than a microsecond
(typically). However, once the data is stored, it appears at the output of
the latch until new data is written in. Thus, the output data will be
displayed until the next byte of data is outputted by the MPU.

ittt

ST

INVNE%NT-ING d I? I l

BUFFERSS ? |

? IYST

ENABLE

LY p—

ADDRESS
BUS

-

A} G

CONTROL
LINES

ADDRESS
DECODER
18000 ¢!

Simplified input circuit.

l Figure 6-18.
]

Input Operations

Figure 6-18 shows a simplified input circuit. Here, the input device is a
bank of eight switches. When a switch is open, its respective input line to
the buffer is held high by the pull-up resistors. However, when a switch is
closed, itsrespective input line is pulled low because the switch connects
it to ground.

In this simple circuit, no latch is required between the switches and the
data bus. However, a buffer is used so that the switch bank can be
effectively disconnected from the data bus when the switches are not
being addressed.

As with the output circuit, an address decoder monitors the address and
control lines. Notice that the assigned address is 8000, To input data
from the switch bank to accumulator A, we use the instruction: LDAA
8000,¢.0r, we could input the data to accumulator B by using the instruc-
tion: LDAB 8000,.

——
HEATHKIT
CONTINUING
EDUCATION
P

The 6800 Microprocessor — Part 2 6'31

In either case, the address 8000, is placed on the address line. The
address decoder recognizes this address and enables the buffer. For a
brief interval (typically less than one microsecond), the lines of the data
bus assume the same state as the lines on the right side of the buffer. If no
switch is depressed, all data lines will be high and all 1’s (FF,¢) will be
loaded into the accumulator. However, if one of the switches (S,, for
example) is depressed, its respective data line (Dy) will be low. In this
case, the number read into the accumulator will be FE;;. By examining
the byte that is read in, the MPU can determine which switch is de-
pressed.

Input — Output Programming

You now know enough about simple input/output circuits to perform
some I/O operations. Refer to Figures 6-17 and 6-18. For the first example,
assume that you would like one of the LEDs to light when the correspond-
ing switch is pushed. That is, LED, should light when S, is pushed; LED,
should light when S, is pushed, etc.

If you refer to Figure 6-17, you will see that an LED is caused to light by
placing a 0 in the proper bit in the latch. For example, a 0 in bit 0 will
cause LED, to be forward biased. Thus, the diode will conduct and emit
light. Notice that a 1 at bit 0 will not allow the diode to conduct and emit
light. Consequently, a 0 turns the LED on and a 1 turns it off.

Refer to Figure 6-18, and you will find that, when one of the switches is
closed, its corresponding line goes to 0. If the switch is not closed, its
corresponding line is at 1.

If we load data into one of the accumulators from address 8000, and then
store the data at address 9000,¢, the switches will appear to control the
LED’s. The program could look like this:

r—> LDAA
80
00

STAA
90
00

BRA
F8

6-32

UNIT SiX

If Sy, and only S,, is closed when the LDAA 8000 instruction is executed,
11111110, will be loaded into accumulator A. The next instruction stores
this data byte in the output latch. This causes LED,, and only LED,, to
light. The BRA instruction holds the MPU in a tight loop. Try a few
examples and verify that each time a switch is closed, the corresponding
LED will light. If the switches are set to some 8-bit binary number, the
LED’s will display that 8-bit number.

Now, suppose we change our mind and decide that the LEDs should
display the one’s complement of the binary number set on the switches.
We do not have to touch the hardware. Instead, we just change the
program.The new program might look like this:

»>LDAA
80
00
COMA
STAA
90
00
BRA
F7

Notice that we have simply inserted the one’s complement instruction
between the input and output operations.

As another example, suppose we wish to display a number that is four
times greater than the number set on the switches. Our program could be
changed to this:

- DAA
80
00

ASLA

ASLA

STAA
90
00

BRA
F6

Once again, no hardware change is needed. We simply insert two ASLA
instructions between the input and output operations.

mmw The 6800 Microprocessor — Part 2

Although these examples are very simple, they illustrate the flexibility of
this I/O arrangement. Data is pulled from the input device as if it were
being pulled from memory. Once in the MPU, the data byte can be
modified in any way we like. The data can then be transferred to the
output deviceas if it were being stored in memory. While the data isin the
MPU, it can be modified in any number of ways. The input byte can be
shifted left or right. It can be added to — or subtracted from — another
number. It can be ANDed or ORed with another byte. The possibilities are
endless and yet none of these involve a hardware change. All data
manipulations can be accomplished by the program.

Program Control of I/O Operations

In the preceding examples, all I/O transfers are controlled by the program
and the program alone. The program is in a tight loop that inputs data
from the switches, modifies the data (if required), and outputs the data to
the displays.

When this arrangement is used, the MPU never knows if the data at the
input has changed. It simply reads in the data a number of times each
second. By the same token, the MPU outputs the data over and overagain.
This system works well for simple I/O operations. However, as the I/O
requirements become more sophisticated, this technique becomes cum-
bersome.

The program must be in a loop if it is to repeatedly check for inputs and
refresh the output. As the number of data manipulations increase, the
loop becomes longer and the MPU must check the inputs less frequently.
When several I/O devices are used, it must check each input and refresh
each output repeatedly. If the loop becomes too long, the MPU may miss a
momentary switch closure. This may be acceptable in some applications
but in many others it may be intolerable. Obviously then, amore sophisti-
cated method of handling I/O operations must be available to the mi-
crocomputer.

6-33

6-34

UNIT SIX

Interrupt Control of I/O Operations

A more effective way of handling I/O operations involves a concept
called interrupts. Interrupts are a means by which an I/O device can
notify the MPU that it is ready to send input data or to accept output data.
Generally, when an interrupt occurs, the MPU suspends its current oper-
ation and takes care of the interrupt. That is, it might read in or write outa
byte of data. After it has taken care of the interrupt, the MPU returns to its
original task and takes up where it left off.

An analogy may help you to visualize an interrupt operation. Compare
the MPU to the president of a corporation who is writing a report. The
interrupt can be compared to a telephone call. The president’s main task
is the report. However, if the telephone rings (an interrupt), she finishes
writing the present word or sentence then answers the phone call. After
she has attended to the phone call, she returns to the report and takes up
where sheleft off. In this analogy, theringing of the telephone notifies the
president of the interrupt request.

This analogy shows the difficulty of the program controlled I/O
technique discussed earlier. If we remove the interrupt request (the
ringing of the phone), we are left with an almost comical situation. The
president writes a few words of the report. She then picks up the phone to
see if anyone is on the other end. If not, she hangs up the phone, writes a
few more words, and checks the phone again. Clearly, this technique
wastes an important resource — the president’s time.

This simple analogy shows the importance of an interrupt capability.
Without it, a great deal of the MPU'’s time can be wasted doing routine
operations. The next section will examine the interrupt capabilities of the
6800 MPU.

EDUCATION The 6800 Microprocessor — Part 2

Self-Test Review

21.

22,

23.

24.

25.

26.

27.

What are the two methods by which microprocessors handle I/O
operations?

Which method does the 6800 MPU use?

Which instruction can be used for transferring data from an I/O
device to accumulator A?

Which instruction can be used for transferring data from ac-
cumulator B to an I/O device.

Write a program segment that will: read in data from the switch
bank shown in Figure 6-18; double the number: and display the
result on the LED bank shown in Figure 6-17.

What is meant by program control of an I/O operation?

What is meant by interrupt control of an I/O operation?

6-35

6-36

UNIT SIX

Answers

21.

22.

23.

24.

25.

26.

27.

Some microprocessors have input-output instructions; others treat
I/O as memory.

The 6800 MPU treats I/O as memory.
LDAA

STAB

One solution is:

LDAA
80
00

ASLA

STAA
90
00

Using this method, the program regularly reads in or writes out
data. All I/O operations are controlled by the program.

Using this method, the I/O device itself signals the MPU that it is
ready to transmit or receive data. The I/O operations are controlled
largely by the I/O device itself.

EDUCATION The 6800 Microprocessor — Part 2 6‘37

INTERRUPTS

Interrupts were introduced in the previous section in connection with I/O
operations. While I/O operations use part of the interrupt capability of the
MPU, interrupts are also used in other ways. The 6800 MPU has four
different types of interrupts:

Reset
Non-Maskable Interrupt (NMI)
Interrupt Request (IRQ)
Software Interrupt (SWI)

This section will examine each of these interrupts in detail.

Reset

In a typical application, the microcomputer has a control or monitor
program in aread-only-memory (ROM). Also, arandom access read-write
memory (RAM) is used for holding input data, intermediate answers,
output data, etc. As we have seen, the 6800 MPU has the capability of
addressing up to 65,536,, memory locations. Most microprocessor appli-
cations do not require this much memory. In many applications, the
control program requires less than ten percent of the possible locations.
The RAM probably uses less than two percent. Generally, the monitor
program is placed at the high memory addresses. The RAM is usually
given the low memory addresses so that the direct addressing mode can
be used. The I/O devices are given intermediate addresses. Thus, the
memory addresses may be allocated as shown in Figure 6-19.

Notice that the control or monitor program is placed in a ROM at the very
top of memory. In this example, a 1024,,byte ROM is used. The addresses
of the ROM are FC00,; through FFFF ;. A small RAM is placed at the low
end of memory. Addresses 0000, through 01FF ;s are used. Notice that all
other addresses are unused except for two. The input device is assigned
address 8000,5, while the output device is assigned address 9000,.

The monitor program stored in the ROM, controls all the activities of the
MPU. At all times, the entire system is being run by this program. In this
example, when the microprocessor is initially turned on, it should start
executing instructions at address FC00,,. Also, we should be able to
restart the program at this address at any time. In order to accomplish
this, the 6800 MPU has a built-in reset capability.

0000

O1FF

8000

9000

FCOO

FEFF

512 BYTES OF
RAM

UNUSED
ADDRESSES

ADDRESS OF

UNUSED
ADDRESSES

INPUT DEVICE
ADDRESS OF

UNUSED
ADDRESSES

1024 BYTES
of
ROM

Figure 6-19.

oUT2YT DEVICE

Memory allocations in a typi-
cal microcomputer system.

6-38

UNIT SIX

HEATHKIT
CONTINUING
EDUCATION
—_————0

Interrupt vector assignments.

The 6800 MPU has a signal line or control pin that is called Reset. This
pin or line is connected to areset switch of somekind. If this line goes low
for a prescribed period of time (to be explained later) and then swings
high, the MPU will initiate a reset interrupt sequence. The main purpose
of the reset interrupt sequence is to load the address of the first instruc-
tion to be executed into the program counter. This would be easy to
accomplish if, in every application, the starting address were the same.
However, the starting address differs from one application to the next.
Therefore, a convenient means is provided to allow the designer to
specify any starting address that he likes.

In any 6800 based microprocessor system, the upper eight bytes of ROM
are reserved for interrupt vectors. An interrupt vector is simply an ad-
dress that is loaded into the program counter when an interrupt occurs.
Figure 6-20 shows how these eight reserved memory bytes are allocated.
Notice that addresses FFFE,; and FFFF,; contain the reset vector. That is,
these two memory locations contain the address of the first instruction
that is to be executed when the microcomputer is initially started. In our
example, the first instruction in the monitor program is at address FC00 .
Consequently, this is our reset vector. Location FFFE,; must contain the
high byte of the address (FC,5) and FFFF 4 must contain the low byte of
the address (00).

Remember locations FFFE,; and FFFF are in the read-only-memory.
Therefore, the designer must provide the proper reset vector at the time
he is writing the monitor program.

Address

FEFD | e ey

LLER Iy

FEE A | S ey

FRFB | "o
Figure 6-20. FFFC Non-Maskable-interrupt Vector | -

(high order address)
Non-Maskable-interrupt Vector
FFFD (low order address)

Reset Vector
FFFE (high order address)
FFFF Reset Vector

(low order address)

HEATHKIT
CONTINUING
EDUCATION

The 6800 Microprocessor — Part 2 6'39
——— :

Figure 6-21 shows the sequence of events that occurs when the MPU is
reset. First, the interrupt (I) mask bit is set. You will recall that the I flag is
one of the condition code registers. As you will see later, if this flag is set,
it prevents one of the other interrupts from occurring. Thus, the MPU sets
the interrupt mask bit so that the reset sequence will not be interrupted by
a request for interrupt by one of the I/O devices.

Set Interrupt
Mask Bit (1)

Y

Load high byte
of PC with
contents of

FFFE s
¢ Figure 6-21.

Reset interrupt sequence.

Load lower byte
of PC with A Reset

contents of Interrupt
FFFF 5 Sequence

N e

Start normal Normal
Fetch-Execute MPU
Cycle v Cycle

Second, the contents of location FFFE,4 are loaded into the high byte of
the program counter. This is done by sending the address FFFE,; out on
the address bus. The memory location is read out and its contents are
placed on the data bus. The MPU picks up this byte and places it in the
upper eight bits of the program counter. In our example, the byte in
location FFFE; is FCy.

Next, the contents of location FFFF ¢ are loaded into the lower eight bits
of the program counter. This is done by setting the address bus to FFFF .
Thus, the contents of the highest memory location are placed on the data
bus. In our example, this byte is 00,. At this point, the program counter
contains the address of the first instruction which is FC00,.

Thereset sequence is then terminated by switching the MPU to its normal
fetch-execute machine cycle. Thus, the instruction at address FC00,4 is
fetched and executed. From this point on, all MPU activities are control-
led by the program.

6'40 UNIT SIX

The microprocessor system will have a reset switch somewhere in the
system. This will allow the operator to restart the system if the system
locks up or runs away for some reason. In addition, some systems will
have an automatic reset feature that will allow the system to reset itself
after a power failure. In both cases, thereset capability of the MPU is used.

This reset capability can be considered an interrupt, since the MPU
leaves whatever it is doing and jumps off to the start of the monitor
program. In most cases, the monitor program would start with a short
subroutine that initializes the system. It would do things like set up the
stack pointer, initialize displays, etc.

Non-Maskable Interrupts

The 6800 has two other types of hardware interrupts. One of these
interrupts is maskable; the other is not. A maskable interrupt is one that
the MPU can ignore under certain conditions. Whereas, a non-maskable
interrupt cannot be ignored. To illustrate the difference, recall the corpo-
ration president analogy.

The president’s report writing can be interrupted by the telephone. How-
ever, by telling her secretary to hold all calls, she has effectively masked
one source of interruptions. In this analogy it is impractical to mask all
interrupts. For example, it could be counterproductive to mask the fire
alarm.

Somewhat the same situation can exist in a microprocessor controlled
system. Some interrupts can be ignored for a few seconds while the MPU
is performing a more important task. This type of interrupt can be
masked. Others must not be ignored at all. These cannot be masked. Of
course, it is up to the designer to decide which interrupts can be masked
and which cannot. The 6800 MPU has provisions for handling both types.
How the MPU handles the non-maskable type will be discussed first.

The 6800 MPU has a control line called the non-maskable interrupt (NMI)
line. A high-to-low transition on this line forces the MPU to initiate a
non-maskable interrupt sequence. The purpose of this sequence is to
provide an orderly means by which the MPU can jump off to a service
routine that will take care of the interrupt.

This becomes somewhat involved because the MPU must be able to go
back to its main program after the interrupt service routine is finished. It
must be able to pick up exactly where it left off. Furthermore, all registers
must hold exactly the same data and addresses that they held when the

——
HEATHKIT
m}',‘l"&“ The 6800 Microprocessor — Part 2 6‘41

interrupt occurred. In other words, when an interrupt occurs, the pro-
gram count must be saved so that the MPU can later return to this point in
the program. Also, the contents of the accumulators, index register, and
even the condition code registers must be saved so that the MPU can be
restored to the exact condition that existed at the instant the interrupt
occurred.

The 6800 MPU accomplishes this by pushing all the pertinent data onto
the stack. Then, after the interrupt has been serviced, the MPU returns to
its previous status by pulling the data from the stack.

The non-maskable interrupt sequence is shown in Figure 6-22. A non-
maskable interrupt is initiated when the NMI line goes from its high state
toitslow state. The MPU finishes the execution of the current instruction.
However, before another instruction is fetched, the MPU pushes the
contents of its registers onto the stack. Recall that the stack pointer always
points to the top of the stack. For this example, assume that the stack
pointer was set by an earlier instruction to address 0068,.

STACK
(w) T T ~— New top of
(0061,6) SP-7 @ stack
SP-6 | Condition Codes
SP-5! Accumuiator B
SP4| Accumuiator A
SP3 Index Reg (high byte)
SP-2 | Index Reg (low byte)
Push registers
onto stack SP-1 Program Count (high byte)
in order Original
shown (0068;) SP | Program Count (low byte) |4 top of stack
Set Interrupt
mask bit
U}
Load upper byte
of PC with
contents of
FFFC
Load lower byte .
of PC with Figure 6-22.
contents of Non-maskable Non-maskable interrupt se-
FFFDy6 Interrupt
Sequence quence.
l
MPU
Start normal
fetch-execute Cycle
cycle

6-42

UNIT SIX

The MPU pushes the lower eight bits of the program counter into memory
location 0068,,. Then it decrements the stack pointer so that the upper
eight bits of the program counter are pushed into address 0067,s. Next,
the contents of the index register are pushed into addresses 0066,; and
0065,¢. The contents of accumulators A and B and the condition codes are
also pushed in as shown. When all this has been done, the stack pointer
will have been decremented seven times to 0061 .

Return to the flow chart and notice that the next step is to set the interrupt
mask bit. This allows the MPU to ignore any interrupt requests that occur
while the non-maskable interrupt is being serviced.

At this point, the MPU is ready to jump to the interrupt service routine.
But, what is the address of this routine? Recall the interrupt vector chart
that was shown earlier in Figure 6-20. The non-maskable interrupt vector
is at addresses FFFC,s and FFFD,s. Thus, the upper byte of the program
counter is loaded from FFFC,; while the lower byte is loaded from
FFFD,. This directs the MPU to the first instruction in the non-maskable
interrupt service routine. From this point on, the MPU returns to its
normal fetch-execute cycle until the service routine is finished.

The sequence of events shown in Figure 6-22 happen automatically when
a non-maskable interrupt sequence is initiated. The NMI line gives exter-
nal hardware a method of forcing a jump-to-subroutine to occur. In this
case, the subroutine is a short program that performs some action to take
care of the interrupt.

Return From Interrupt (RTI) Instruction

The non-maskable interrupt is used when some situation exists that
cannot be ignored. You can probably visualize applications that would
require such a capability. For example, assume that a microprocessor is
being used in a numerically controlled drill press. The non-maskable
interrupt could be used in conjunction with limit switches to prevent
drilling holes in the work surface. Or, it could be used to shut down the
machine if someone’s hand got too close.

The purpose of the service routine is to direct the operation of the
computer to take care of the interrupt. Typically, it would first determine
which external device initiated the interrupt. Then it would determine
the nature of the interrupt. Finally, it would take whatever action was
necessary to take care of the interrupt. In many cases, the interrupt is of a
routine nature and can be easily serviced. In these situations, the MPU

—~

HEATHKIT
CONTINUING

EDUCATION The 6800 Microprocessor — Part 2

"

should return to the main program and take up where it left off. There is
an instruction that allows the MPU to do this. It is called the ‘“Return-
From-Interrupt” (RTI) instruction. Look on your Instruction Set Sum-
mary card, and you will see that this is a one-byte instruction whose
opcode is 3B.

Figure 6-23 shows how the RTI instruction is used. The main program is
shown on the left, while the interrupt service routine is shown on the
right. Assume that the interrupt signal occurs while the LDAB# instruc-
tion is being executed. The MPU finishes that one instruction and pushes
all pertinent data onto the stack. It then jumps to an address determined
by the NMI vector in address FFFC and FFFD. The contents of these two
locations determine the starting address of the NMI service routine.
Notice that the last instruction in the service routine is the return-from-
interrupt instruction. This instruction returns program control to the
point in the main program that the MPU left when the interrupt occurred.

This can be done because the previous status of the MPU was preserved in
the stack. The RTI instruction causes the accumulators, the index regis-
ters, the condition code register, and the program counter to be loaded
from the stack. Thus, the same information that went into the stack when
the interrupt occurred comes out of the stack when the RTI instruction is
executed. This allows the MPU toreturn to the main program and take up
where it left off.

ADDRESS DETERMINED
8Y NMI VECTOR
IN FFFC AND FFFD

\’vd -
F230

LDAA
28
BEQ

QB
NON-WASKABLE
INTERRUPT DECA
occurs —tL D A B#

28
ADDB
6 4
BRA
F
LDAA
29 RTI

MA N
PROGRAM L™
INTERRUPT

SERVICE

ROUTINE

. o

Figure 6-23.
The RTI instruction returns
control to the main program
after the interrupt has been ser-
viced.

6-43

6-44

UNIT SIX

sequence.

Interrupt Request (IRQ)

The interrupt request is very similar to the non-maskable interrupt. The
main difference between the two is that the interrupt request is maskable.

The 6800 MPU has a control line called the interrupt request (IRQ) line.
When this line is low, an interrupt sequence is requested. However, the
MPU may or may not initiate the interrupt sequence depending on the
state of the interrupt mask (I} bit in the condition code register. If the I bit
is set, the MPU ignores the interrupt request. If the I bit is not set, the MPU
initiates the interrupt sequence. This procedure is very similar to the NMI
procedure discussed earlier. Figure 6-24 shows the interrupt procedure.

Current

Instruction STACK
finished (T —e)
New top
SP-7 l@of stack
SP-6 | Condition Codes
Interrupt SP-5 | Accumulator B
mask bit set
2 SP-4 | Accumulator A
SP-3 | Index Reg. (high byte)
A SP-2 | Index Reg. (low byte)
Push register
fetch and onto stack SP-1 | Program Count (high byte)
“struction. in order o top o
shown sp | Program Count (low byte) |4 top of
‘ stack
Set interrupt
mask bit
U]
y
Load upper byte
. of PC with
Figure 6-24. contents of
The interrupt request (IRQ) FEFY
Yy

Load lower byte
of PC with

contents of Iinterrupt
FFFQ Request
Sequence
Y Normal
Start normat MP?
fetch-execute Cycle

cycie

The 6800 Microprocessor — Part 2 6‘45

When the IRQ line is low, the MPU finishes the current instruction. It
then checks the interrupt mask bit. If I is set to 1, the MPU ignores the
interrupt request and executes the next instruction in sequence. How-
ever, if =0, the MPU pushes the contents of the various registers onto the
stack in the order shown.

Next, the interrupt mask bit is set to 1. This prevents the MPU from
honoring other interrupt requests until the present interrupt has been
serviced.

The address of the IRQ service routine is at addresses FFF8,; and FFF9,.
The program counter is loaded from these addresses. Thus, the next
instruction to be executed will be the first instruction in the interrupt
request service routine.

Once in the service routine, the MPU goes into its normal fetch-execute
cycle. When the interrupt has been serviced, control can be returned to
the main program by an RTI instruction.

Interrupt Mask Instructions

The 6800 MPU has two instructions that allow software control of the
interrupt mask bit. You have seen that the I bit in the condition code
1_'E_gister is set any time an interrupt sequence is initiated. This prevents an
IRQ from being honored while a previous ITZ-(-Q_or NMI is being serviced.
This is an example of setting the interrupt flag with hardware.

In many cases, it is necessary to set the interrupt flag with software.
Therefore, the 6800 MPU has an instruction that can do this. It is called
the ““Set-Interrupt-Mask” (SEI) instruction. If you refer to your Instruc-
tion Set Summary card, you will see that this is a one-byte instruction
whose opcode is OF ;5. The flag may be set to prevent an interruption on a
part of the program that we do not wish to be interrupted. It has the effect
of disabling interrupt requests.

Of course, we do not wish to permanently disable the interrupt capabil-
ity. Therefore, some means must be provided for enabling the interrupt
request capability. An instruction called “Clear-Interrupt-Mask’’ (CLI) is
available for this purpose. This is a one-byte instruction whose opcode is
OE,s.

While we can disable or enable the interrupt request line with these
instructions, they do not affect the non-maskable interrupt. As the name
implies, the NMI line cannot be disabled by the I flag.

6-46

UNIT SIX

Software Interrupt (SWI) Instruction

The 6800 MPU has a software equivalent of an interrupt. It is an instruc-
tion called the “Software Interrupt” (SWI). When executed, the instruc-
tion causes the MPU to perform an interrupt sequence that is very similar
to the hardware interrupt sequences already discussed. As shown on
your Instruction Set Summary card, this is a one-byte instruction whose
opcode is 3F .

Figure 6-25 shows the sequence of events that occurs when this instruc-
tion is executed. First the contents of all the pertinent registers are
pushed onto the stack in the order shown. Next, the interrupt mask is set
so that interrupt requests cannot interfere. Finally, the software interrupt
vector is obtained from addresses FFFA,; and FFFB,. This vector is
loaded into the program counter so that the next instruction will be
fetched from this address. As with the other interrupts, the MPU will
return to the original program when a return-from-interrupt instruction
is encountered.

r\—\f’\M

New top of
SP-7 4 stack
SP-6 Condition Codes
SP-5 Accumulator B
SP-4 Accumulator A
Swi
SP-3 Index Reg. (high byte)
1 SP-2 | Index Reg. (low byte)
Pusn registers
opto stack SP-1 Program Count {high byte)
in order Originai top
shown SP Program Count (low byte) | @ of stack
Set interrupt
mask bit
U]
Load upper
byte of PC with
contents of
FFFA
l Figure 6-25.
Load lower The software interrupt (SWI)
byte of PC with
contents of Software sequence.
FFFB Interrupt
Sequence
Normai
MPU
Start normal Cycle
fetch-execute
cycie

The 6800 Microprocessor — Part ZJ 6' 47

The software interrupt instruction can be used to simulate hardware
interrupts. It is also helpful for inserting pauses in a program. For exam-
ple, the ET-3400 Microprocessor Trainer uses the software interrupt to
perform the single-step function and to implement the breakpoint capa-
bility.

Wait for Interrupt (WAI) Instruction

One of the first instructions introduced in this course was the halt in-
struction (opcode 3Eg). In the previous unit, you learned that this in-
struction is actually called a Wait-for-Interrupt (WAI). What exactly does
this instruction do? It does cause the MPU to halt, but there is more to it
than that.

When the WALI instruction is executed, the program counter is in-
cremented by one. Then the contents of the program counter, index
register, accumulators, and condition code register are pushed onto the
stack. The order is exactly the same as if an interrupt occurs. The MPU
then enters a wait state, doing nothing further until, and unless, an
interrupt occurs.

The MPU can be forced back into action either by an interrupt request or
by a non-maskable interrupt. The NMI sequence is the same as that
described earlier except for one important difference. Remember that the
contents of the registers have already been pushed onto the stack. Thus,
this part of the NMI sequence is omitted. This allows the MPU to respond
faster to the interrupt.

The IRQ sequence is also the same as that described earlier except that the
registers are not pushed onto the stack again. As always, the IRQ signal is
ignored if the interrupt mask bit is set.

Of course, the reset signal can override the wait state. Thus, there are
three ways of escaping the wait state.

HEATHKIT
CONTINUING
EDUCATION
=

The 6800 Microprocessor — Part 2

Answers

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Reset, non-maskable interrupt, interrupt request, and software in-
terrupt.

Interrupt request (IRQ).

To direct the MPU to the first instruction in the monitor or control
program.

FFFE,; and FFFF 4.
The address of the interrupt service routine.

A. The current instruction is executed.

B. The contents of the pertinent registers are pushed onto the
stack.

C. The interrupt mask bit is set.

D. The NMI vector from addresses FFFC,s and FFFD,; is loaded
into the program counter. _

E. The instruction at the address specified by the NMI vector is
fetched and executed.

A routine that takes care of the interrupt and then returns control to
the main program.

The Return-From-Interrupt (RTI) instruction.

The stack pointer is incremented seven times as the previous MPU
status is pulled from the stack.

Reset.

Set Interrupt Mask (SEI).

A. By a reset signal.

B. By a non-maskable interrupt.

C. By an interrupt request (if 1=0).

If the MPU is waiting for an interrupt.

6-49

6-50

UNIT SIX

EXPERIMENTS

Perform Experiments 9 and 10 in the Programming Experiment Section
(Unit 9) of this course. After you finish these experiments, return to this
unit and complete the unit examination.

EDUCATION The 6800 Microprocessor — Part 2 6-51

UNIT EXAMINATION

1. Ifthelbitinthe condition coderegister is set, the MPU will ignore:
A. The reset signal.
B. The non-maskable interrupt signal.
C. The interrupt request signal.
D. The software interrupt instruction.

2. Which of the following lists contains instructions that do net
change the contents of the stack pointer?

A. PULA, DES, RTI, WAL
B. PSHB, INS, RTS, SWL
C. TXS, BSR, PULB, LDS.
D. PSHA, JMP, TSX, STS.
3. Which of the following program segments will successfully swap

the contents of the two accumulators?

A. PSHA B. PSHB C. PSHA D. PSHB
TAB TAB TBA TBA
PULA PULA PULA PULB

4. The stack pointer is automatically:
A. Decremented before data is pushed onto the stack.
B. Incremented before data is pushed onto the stack.
C. Decremented after data is pushed onto the stack.
D. Incremented after data is pushed onto the stack.

5. One difference between the JMP and JSR instruction is:
A. JMP can use either extended or indexed addressing.
B. The program count is saved when JSR is executed.
C. The JSR will be executed even if the interrupt mask is set.
D. JMP is an unconditional jump.

6. The last instruction in a subroutine is generally:
A JMP instruction.

An RTS instruction.

An RTI instruction.

A JSR instruction.

o0y

6-52 | unir six

10.

In the 6800 MPU, which of the following instructions could be used
to transfer data from an I/O device to accumulator A?

A. INPA.

B. LDAA.

C. STAA.

D. OUTA.

Refer to Figures 6-17 and 6-18. Which of the following program
segments will read in data from the switch bank and, if the number

is larger than 2A,,, display it on the LED’s?

A. LDAA B. LDAA C. LDAA D. LDAA

80 80 80 90
00 00 00 00
CMPA# SUBA# STAA SUBA#

2A 2A 90 2A
BHI BHI 00 BHI

01 01 01
WAI WAI WAI
STAA STAA STA

90 90 80

00 00 00

Which of the following types of interrupts does neot cause data to be
pushed into the stack?

Software interrupt.

Non-maskable interrupt.

Reset interrupt.

Interrupt request.

ocOow»

Generally, the last instruction in an interrupt service routine will
be:

An RTI instruction.

An SWI instruction.

An RTS instruction.

An NMI instruction.

oCOw»

