HEATHKIT
CONTINUING

EDUCATION

Yol

Individual Learning
Program

MICROPROCESSORS

Unit 8
INTERFACING — PART 2
EE-3401
HEATH COMPANY Copyright © 1977

Heath C
BENTON HARBOR, MICHIGAN 48022 Al Fights Rasenved

Printed in the United States of America

HEATHKIT

8-2 [UNIT EIGHT CE%NU?:T%N&
CONTENTS
Introduction..........c.c i 8-3
Unit Objectives iiiii 8-4
Unit Activity Guide 8-5
Interfacing with Switching L. 8-6
The Peripheral Interface Adapter (PIA) 8-20
Usingthe PIA 8-33
Interfacing Experiments i 8-42
Unit Examination........... o i i .. 8-43

Examination ANSWEerSt 8-45

HEATHKIT
CONTINUING
EDUCATION

i e

Interfacing — Part 2

s e

UNIT 8

INTERFACING — PART 2

INTRODUCTION

In this unit, you will continue your study of interfacing the microproces-

sor with other circuits. The emphasis will be on interfacing with switches .

and displays, which are the most common input and output devices.

You will also be introduced to a special type of support IC called the
peripheral interface adapter. As you will see, this device can greatly
simplify many interfacing problems.

As you complete this unit, you will perform several interfacing experi-
ments. As with Unit 7, a basic knowledge of electronics in general and
digital techniques in particular is required to gain full benefit from these
experiments.

8-3

8-4

UNIT EIGHT

HEATHKIT
CONTINUING
EDUCATION

UNIT OBJECTIVES

When you have completed this unit you will be able to:

1.

Draw a diagram showing how mechanical switches can be con-
nected to an MPU.

Explain how the MPU can eliminate the effects of contact bounce.
Explain the operation of a program that detects contact closure of
switches, provides for debouncing, and decodes a simple

keyboard.

Draw a simplified block diagram of a PIA and explain the purpose
of the output, control, and data direction register.

Write a simple program that will configure the PIA in any desired
input-output combination.

Explain how the PIA can be used to drive displays and encode
keyboards.

Interfacing — Part 2

UNIT ACTIVITY GUIDE

o o oooo0oooooaoaa

Play Cassette Tape Section “Designing with Microprocessors.”

Read Section on Interfacing with Switches.

Complete Self-Test Review Questions 1 through 11.
Read Section on the Peripheral Interface Adapter (PIA).
Complete Self-Test Review Questions 12 through 20.
Read Section on Using the PIA.

Complete Self-Test Review Questions 21 through 28.
Perform Interfacing Experiments 5 through 9.

Play Cassette Tape Section ‘‘Comparing Microprocessors.”
Complete Unit Examination.

Check Examination Answers.

Complete Final Examination (optional).

Mail Final Examination in the envelope provided (optional).

8-5

8-6

UNIT EIGHT

HEATHKIT
CONTINUING
_EDUCATION

INTERFACING WITH SWITCHES

The most popular input device used with the microprocessor is the
switch. The operator of microprocessor-based equipment usually com-
municates with the MPU by using keyboard switches. However, in com-
pletely automated systems, the equipment being controlled often com-
municates with the MPU by limit switches, pressure switches, etc. In this
section, you will examine some techniques used in interfacing with
switches.

Interfacing Requirements

When interfacing with a switch, or switches, four operations are in-
volved. First, the MPU must select or address the proper switch bank.
Second, it must detect contact closure. Third, it must provide for de-
bouncing (unless this is accomplished by external hardware). Finally, it
must decode the input. The following information describes each of these
operations in more detail.

Selecting the Switch Figure 8-1 shows a simple arrangement for con-
necting eight switches to the MPU. Three-state buffers are used to inter-
face the switches with the data bus. The buffers are enabled by the output
of the address decoder. This decoder can use any of the decoding
schemes discussed earlier. Assume that the decoder responds to address
C003,5. Until the decoder receives this address, the buffers are disabled.
This effectively disconnects the switches from the data bus.

To find out if a switch is closed, the MPU must read in the data from this
address. An easy way to do this is with the LDAA instruction. When the
LDAA Co003 instruction is executed, the address C003 goes out on the
address bus. The decoder detects this address and enables the three-state
buffer. Thus, for an instant, the switch bank is connected to the data bus.
The data from the switch bank is loaded into accumulator A.

Detecting Contact Closure If none of the switches are closed, all the data
lines will be high because of pull-up resistors R, through R;. Thus, the
data entered into accumulator A will be FF ;5. To test for a switch closure,
the contents of accumulator A can be compared with FF .. That is, a
CMPA#FF instruction could be used. If this is followed by a BNE instruc-
tion, the MPU will branch if a key is depressed. Otherwise, it will not. For
example, suppose S, is closed. When the accumulator is loaded from
address C003,4, the D, line wili be low. Thus, the number loaded into the
accumulator will be FE ;. The CMPA instruction clears the zero flag since
no match occurs. Therefere, the BNE instruction causes the branch to
occur.

Interfacing — Part 2

Debouncing the Switch Most mechanical switches produce contact
bounce. When the switch is closed, the contacts do not make an im-
mediately solid electrical or mechanical connection. Instead, they
“bounce” open and closed for a brief period of time. Figure 8-2 illustrates
this effect.

While contact bounce may only last for a few milliseconds, this is long
enough for the MPU to interpret the bounce as repeated switch closures.
To overcome this bounce problem, some switches use cross-coupled
NAND gates that will immediately latch in one state so that all contact
bounce is ignored. However, this requires additional circuitry.

In many applications, a better approach is to let the MPU itself do the
debouncing. A simple scheme is to wait about ten milliseconds and then
read in the data from the switch bank again. If the same indication occurs,
then the MPU can be certain that the switch is closed. The switch can be
checked as many times as is necessary to ensure that contact bounce is
eliminated.

ADDRESS
cROM = l—""0ECODER
ADDRESS — SWITCH SWITCH
BUS = Wee CLOSURE goynce OPENING
) ?R s
r=—=-= =1 ! 7
07 1 i g Seamn
i 1 cc
1 IL ?
| % " -
0 o—e
6
T
' 1 ?Rs s Figure 8-2
: | 1 p— The effects of contact bounce.
0s - + T o O—¢
N
i i ¢
| 4 SR S
10 ! ' 1! e’
DATA D4 : ———‘——o o—e
BUS 0 ! “Vee
[[
: ? Ry S,
0y i , o—4e
! | Yee
! El—m R S
i I % 2 2
! [
D B .
2 N HIER © i Figure 8-1
| " g . Interfacing a bank of switches to the
] : R |
| - MPU.
D) - + * O O—e
| ~ ! Ve
i H q
: | iRO —SO
i i i
i ! =
i i

————————d

8-7

8-8

UNIT EIGHT

Decoding the Switches After the MPU determines that a switch has
been closed, it must decide which switch it is. In most cases the switch .
closure represents a number. For example, the MPU should recognize an
S; closure as the number 5. This, too, is easily accomplished by the proper
subroutine.

Referring to Figure 8-1, you can see that each switch corresponds to one
bit of the data line. When a switch is closed, the corresponding data line
goes to 0. When loaded into the accumulator, the corresponding bit is
also 0. The bit that is 0 can be detected by rotating the accumulator into
the carry bit until the carry bit is cleared. By counting the number of
rotations, the MPU can determine which switch is depressed.

In most applications, another job of the decoding procedure is to reject
multiple switch closures. If two switches are closed simultaneously, the
MPU should not accept data. If a second switch is closed before the first
switch is released, the MPU may reject the data or accept only the first
switch closure. By using a few extra programming steps, a very simple
and inexpensive keyboard can appear quite sophisticated.

A Typical Keyboard Arrangement

The keyboard arrangement used with the ET-3400 Microprocessor
Trainer is a good example of what can be done with simple switches. A
simplified circuit is shown in Figure 8-3.

Interfacing — Part 2 8'9

CONTINUI
EDUCATION
_SDICATION
o e L
1
! ic, H
' '
1 G 9 iy !
VMA 0 8j— _ -
i D—r I i T
1 '
i 'Alsu—dc 1. : E
1 4}
! Ma—8 3 : '
A 0 i = 1]
1 cie{ P13 —A 1 (i i
1 0 3 L 1
1 1
: 741542 3 :
0 l:
1 LM b i
1 . '
: ¢ 5 !
1 3
v : N - i
0 2 8
i Mo v b
: 0164 O‘P——] 6:
; 16 740542 1 i
! Ay 2 18 3— H
yj
: L Ag d A] -
1 L
: 0
- I
Az
Al
Ag
icp3
1 b} D D
[I S 7 - 8 -4 9
L R by P .
| ! o—¢ o9 o-¢ A
Y|l ol
B { [l &
0,—4 <] : A
1 ! 04 o4 o9
i
L] a7 ©
RSZE N { [l &
o, ! <} + - W
: + -
i ! o—¢ o9 o
i 1
BN | =]
, } |1 I I i I Rs4
2 + ~d v g hd v
} ! o—e o—9 o9
i
| ' @] =) g |
b L] { [l &
T * e e -
i
H o— o o
]
, ol @) 3|
D2 { 1 s
04 + N } & .- v
i e
i ! @
i l:‘ ! j Rs7
D + 1 S
5 \ \1 J'

Figure 8-3
Keyboard arrangement of the ET-3400
Microprocessor Trainer.

8-10

UNIT EIGHT

HEATHKIT
CONTINUING
"EDUCATION |

s

The Circuit The address decoder is shown in dotted lines at the top of
the Figure. For the most part it consists of three 74LS42 decoders. (The
operation of this type of decoder was discussed in an earlier experiment.)
The truth table for the 74LS42 is repeated in Figure 8-4.

The address decoder is also used to select the 7-segment displays. How-
ever, in this unit, we will be concerned only with keyboard decoding.

The portion of the address decoder shown in Figure 8-3 monitors address
lines Ag through A,;. That is. it monitors the high order address. The
keyboard is selected by enabling IC13. Normally, IC13 is in its high
impedance state so that the keyboard is isolated from the databus. IC13 is
enabled by applying logic 0 to the enable line {E).

The address decoder enables IC13 when the high order address is COy.
With a high order address of CO,4, address lines A ; and A, are at logic 1
while Ag through A ,; are at logic 0. Decoder IC2 is controlled by address
lines A3, Ay, Ay, and the VMA and ¢2 clock signal. When an instruction
such as LDA C003 is executed, the inputs to IC2 will be as shown in
Figure 8-3. The truth table for the decoder shows that output line 6 will be
logic 0 while all other output lines will be logic 1.

DEC. BCD INPUT OUTPUT LINES

NO.DCBAO1 2345867809
ojooo0oO0|l0 1 1 1 1 1 1 1 1 1
1tl]ooo0 11 01t 1t 1 1 1 1 11
2|00t 01 101 1 1 1 1 1 1
3jloo0o 1 1|t 11 01t 111 11
4010011 1 1t0 1 11 14
5101t 0 4ft1t t 1t 1101 1 11
6/0 1 1 0|1 ¢+ 1 11101 1 1
7101 1 {1t 1 14 11 1101 1
gl10 o001 1 111 11 1 01
9l1t 00ttt 1 111 111 10
>9 ”‘c‘gg'E'sD 1 1 111

Figure 8-4

Truth table for the 741.542 decoder.

Interfacing — Part 2 8'1 1

The 1 at output 0 of IC2 is applied to IC3. Address lines A,, through A,,
are also connected to IC3. With a high order address of CO, these lines
will be at 0. With these inputs, the truth table shows that output line 4 of
IC3 will be 0 while all other outputs will be 1. The 0 at output line 4 is
inverted by IC21D. Simultaneously, the 0 at output 6 of IC2 is inverted by
IC21A. These two signals are then NANDed together to form logic 0 at the
output of IC21B. This 0 is applied to input C of IC20.

The other inputs to IC20 include a logic 1 from IC3, logic 0 from Ay, and
logic 0 from Ag. The truth table shows that this will result in a logic 0 at
output 8 of IC20. This logic 0 is applied to the enable input of IC13. This
enables the three-state buffers and momentarily connects the keyboard to
the data bus. Thus, the keyboard is momentarily connected to the data
bus any time the high order address is CO,.

The keyboard is divided into three columns. The center and right col-
umns have five keys each while the left column has six keys. The RESET
key is not shown since it is not addressed as the other keys are. The low
order address determines which column of keys is selected. A, controls
the left column and A, and A, control the center and right columns,
respectively. A column is selected by choosing an address that will force
the desired column line low, but will hold the unwanted column lines
high. Address C003,; fulfills these requirements for the right-hand col-
umn of keys. So do many other addresses, but consider this to be the
address of that column. In the same way, the center column has an
address of C005,5 and the left column has an address of C006 .

Detecting and Encoding a Key Closure The monitor program in the
ROM of the Trainer has a subroutine called ENCODE which starts at
address FDBB,;. The purpose of this subroutine is to look over the
keyboard, determine if a key has been depressed, and produce the proper
hexadecimal value of the depressed key. The hexadecimal value is placed
in accumulator A. Also, the carry flag will indicate whether or not a valid
key entry has occurred. A valid entry is defined as one and only one key
depressed. The C flag will be set if the entry was valid. It will be cleared
for nonvalid entries or no entries at all.

8-12

UNIT EIGHT

HEATHKIT
CONTINUING

= e

|

f
I

The ENCODE subroutine is shown in Figure 8-5. The following explana-
tion will refer to the instructions by the line numbers given on the left.
Notice that the subroutine is written in assembly language.

The first instruction saves the original contents of accumulator B. As you
will see later, the program normally comes here from another subroutine
called INCH. When it does, B will hold a timing count that must not be

lost.
LINE ASSEMBLY CODE COMMENTS
1 ENCODE PSHB Save contents of accumulator B.
2 LDAB COL1 Load the right column into B.
3 LDA A COL3 Load the left column into A.
4 ASL A
5 ASL A Get rid of “don’t care” bits.
6 ASL A
7 ROL B Double precision shift left
8 ASL A of accumulators A and B
9 ROL B to get rid
10 ASL A of “don't care” bits.
11 ROL B
12 PSH B Save contents of B.
13 LDAB COL2 Load the center column into B.
14 AND B #81F Mask off bits 5, 6, and 7.
15 ABA Merge with A.
16 PUL B Restore B.
17 COM A After complementing the keyboard
18 COM B pattern will be in A and B (1 = key
closedj.
19 STX To Save contents of index register.
20 LDX #HEXTAB-1 Point index register to table of hex
values.
21 CBA Which accumulator contains a 1?
22 BEQ ENC3 Neither or both contain 1’s (invalid
entry).
23 BCC ENC1 A contains a 1 so go to ENC1.
24 PSH A B contains a 1 so
25 TBA Swap the contents
26 PULB of A and B.
27 LDX #HEXTAB+7 | Pointthe index register to upper half of
hex table.
28 ENC1 TSTB None of these keys should be closed.
29 BNE ENC3 If they are, go to ENC3.
30 ENC2 INX Otherwise, have the index register
31 ASLA Scan up the table until it
32 BHI ENC2 finds the proper hex value.
33 BEQ ENC4 If only one key is depressed, entry is
valid.
34 ENC3 CLC Entry is not valid so clear C.
35 ENC4 LDAA OX Load the hex value into accumulator A.
36 LDX To Restore index register and
37 PUL B accumulator B to their original values.
38 RTS Return
Figure 8-5

ENCODE subroutine.

Interfacing — Part 2

The next two instructions load A and B from the keyboard columns. After
line 3, A and B will contain the data from the two outside keyboard
columns. Figure 8-6A shows which keys are associated with which bits.
The indicated bit will contain 0 if its associated key is depressed. Other-
wise, it will contain a 1. The X’s are shown in those bits that are not
affected by the keys. The first step is to eliminate these “don’t care” states.
In accumulator A and the carry flag, this is done by shifting to the left.
After line 6, the accumulators and carry flag will contain the keyboard
patterns shown in Figure 8-6B.

Next A and B are shifted left together through the carry flag. Figure 8-6C
shows the contents of these registers after line 11. The contents of B are
then saved by pushing them into the stack. Accumulator B is now free to
be loaded with the data from the center column of the keyboard. Bits 5, 6,
and 7 are masked off leaving the registers as shown in Figure 8-6D. B is
added to A so thatthe 0’s in A are replaced with the states of keys 2, 5, 8, B,
and E. When B is pulled from the stack (line 16), the registers will contain
the keyboard pattern as shown in Figure 8-6E. Notice that each of the 16,
keys is represented by one of the bits in the accumulators. If no keys are
depressed, all bits will be 1's. If a key is depressed, its corresponding bit
will be 0.

In lines 17 and 18, the two accumulators are complemented. Thus, from
this point on a depressed key is represented by a 1 while an open key is
represented by a 0.

Assume that the D key is depressed. In this case, the accumulators will
appear as shown in Figure 8-6F after line 18. In line 19, the contents of the
index register are saved in a temporary location in RAM called TO. Next
the index register is loaded with one less than the starting address of a
hexadecimal table.

C ARRY
ACCUMULATOR B FLAG ACCUMULATOR A

The keyboard bit pattern is placed in

A. [xIx[x[sfefofc]F] ARoOoERD
B. XIXIXxETePII] [[IIzIAIclclo]o]
C. [T FIAIo] oo oTo]0]
D. [ofo[o[zXsTeTe]¢] XaXoo o oTo]0]
E. BEnRDARBO0O0

D IS DEPRESSED
F. [ofofofofoJofo]o] {ofof1fofofofofo]

Figure 8-6

accumulators A and B.

8-13

8-14

UNIT EIGHT

The hexadecimal table is shown in Figure 8-7. Notice that the hex digits
00 through OF are not in order in the table. However, compare the entries
in the table to Figure 8-6E. The first eight entries in the table are in the
same order as the keyboard pattern in accumulator A. The upper eight
entries correspond to the key patterns in accumulator B. As you will see
later, this is no accident.

Line 21 of the program compares the contents of accumulators A and B.
With D depressed, the number in A will be larger. The result is that both
the Z and C flags are cleared. The BEQ does not cause a branch because
the Z flag is cleared. However, the BCC instruction does cause a branch
becausetheC flag is cleared. Notice that the branch is to the point labelled
ENC1 (line 28).

HEX HEX SYMBOLIC ADDRESS
ADDRESS CONTENTS

FFA6 07 HEXTAB
FFA7 0A

FFA8 oD

FFA9Q 02

FFAA 05

FFAB 08

FFAC 0B

FFAD 0E

FFAE 03

FFAF 06

FFBo 09

FFB1 oC

FFB2 oF

FFB3 00

FFB4 o1

FFB5 04

Figure 8-7

The hexadecimal table (HEXTAB).

Interfacing — Part 2

This part of the subroutine encodes the key closure and at the same time
checks to see that no other keys are closed. The first step tests B. If the
result is not zero, the MPU knows that a second key is closed and the entry
is ignored by branching to ENC3. (The result of this will be shown later).
Otherwise, the index register is incremented to the address of the first
entry in the hex table, the contents of accumulator A is then shifted to the
left, and the BHI instruction simultaneously checks both the C and Z
flags. The branch is implemented if both C and Z are cleared. Both are
cleared in this case so the program jumps back to ENC2 and the index
register is incremented so that it points to the second entry in the table.
Accumulator A is shifted left again. This places the 1 (that represents
switch D being closed) into the MSB of the accumulator. C and Z are still
cleared so the BHI instruction sends the program back to ENC2 again.

The index register is incremented again so that it now points to the third
entry in the hex table. Notice that the third entry is OD 4. Thus, the index
register is now pointing to the number that corresponds to the switch
closure. Accumulator A is shifted left again so that the 1 (representing
switch D) is placed in the carry flag. This sets the C flag and, con-
sequently, the BHI instruction cannot cause a branch.

Because the BHI branch does not occur, the next instruction encountered
is the BEQ instruction. If only one key is depressed, the contents of
accumulator A should be zero. If it is zero, then only one key was
depressed. Otherwise, a second key was depressed and the entry should
be tagged not valid. If the entry is valid, the BEQ instruction causes the
program to jump over the CLC instruction to ENC4 (line 35).

At ENC4, accumulator A isloaded with the third entry from the hex table.
Thus, the program has fulfilled its requirements. A number corre-
sponding to the key depressed is in accumulator A and the C flag is set
indicating a valid entry. All that remains is to restore the original con-
tents of the index register and accumulator B. Finally, the RTS instruc-
tion returns the program to the point where this subroutine was called.

If you step through this subroutine with a different key depressed, you
will see that the proper hex code is always returned. If no keys are
depressed or if two keys are depressed, the program will branch to ENC3.
This clears the carry flag. Thus, the subroutine will end with C cleared,
which indicates that the entry was not valid.

8-15

8-16

UNIT EIGHT

HEATHKIT
CONTINUING

Eliminating Contact Bounce A second subroutine is used to eliminate
contact bounce. It is called INCH for “input character.” Its starting ad-
dress is FDF4 and it calls the ENCODE program just discussed 20,4
different times. If for 20, consecutive times, ENCODE tells INCH that a
valid entry exists, INCH is convinced and accepts the entry. Since this
process requires several milliseconds, any contact bounce is eliminated.

This subroutine is shown in Figure 8-8. The subroutine is divided into
two nearly identical halves. The first half (lines 1 through 6) waits for the
keyboard to be cleared (no keys depressed). It does this so that it does not
mistake a previous key closure for a valid entry.

If a key is depressed upon entering this subroutine, first, the contents of B
are saved; then B is loaded with a delaying count of 20,¢. By counting this
number down to zero, the program establishes a delay sufficient to “‘wait
out” any contact bounce.

LINE ASSEMBLY CODE COMMENTS
1 INCH PSH B Save contents of accumulator B
2 INC1 LDA B #$20 Load B with a delaying count of 20,,.
3 INC2 BSR ENCODE Branch to the ENCODE subroutine.
4 BCS INC1 If carry is set go to INC1.
5 DECB Otherwise decrement the count.
6 BNE INC2 If count is not zero go back to INC2.
7 INC3 LDA B #3820 Load B with a delaying count of 20.
8 INC4 BSR ENCODE Branch to the ENCODE subroutine.
9 BCC INC3 If carry is clear, check again.
10 DECB Otherwise, decrement the count.
11 BNE INC4 If count is not zero go back to INC4
12 PUL B Restore the original contents of
accumulator B.
13 RTS Return.
Figure 8-8

INCH subroutine.

Interfacing — Part 2 8‘1 7

The BSR instruction sends the MPU off to the ENCODE subroutine. If a
key is depressed, the C flag will be set when the program returns. The BCS
instruction sends the program back to INC1 if the C flag is set. The
program will stay in this loop until the ENCODE subroutine returns with
the carry bit clear. Of course, this will happen only after a key is released.
This prevents a single entry from being mistaken for two or more entries.
An entry is accepted only after the previous entry is released.

Once a key is released, ENCODE will clear the carry flag. Thus, the BCS
instruction will not cause a branch. Instead B is decremented and
checked for zero. If not zero, the program branches back to INC2. This
loop is repeated 20,4 times and gets rid of any contact bounce associated
with the release of the previous key. Once the program is convinced that
the previous key has been released, it proceeds to the second half of the
subroutine (lines 7 through 13).

Accumulator B is loaded with a delaying count of 20,4 again and the BSR
instruction calls the ENCODE subroutine. Upon return from this sub-
routine, the BCC instruction checks the carry flag. If it is clear, no valid
entry is being received and the program branches back to INC3. In
practice, the MPU in the ET-3400 Trainer spends most of its time caught
in this loop waiting for a key closure to occur.

When a key closure does occur, the ENCODE subroutine sets the carry bit.
This allows the MPU to escape the loop. It then enters the loop composed
of lines 8 through 11. It repeats this loop 20,; times to eliminate any
contact bounce. When it escapes this loop, we can be confident that the
key closure is absolutely valid.

This is a good example of software-hardware trade offs. These sub-
routines make the keyboard appear quite sophisticated. A mechanical or
electromechanical keyboard having all these features would be very
expensive.

You will learn more about interfacing with switches later after you learn
about the peripheral interface adapter. Also, in a later experiment you
will gain some practical experience interfacing switches.

HEATHKIT
8-18 l UNIT EIGHT AT

=3

Ii
!
h
I

It

Self-Test Review

1. List four requirements that must be met when connecting mechan-
ical switches to the MPU.

2. Whattype of circuit is often used between the switches and the data
bus of the MPU?

3. Refer to Figure 8-1. If no switches are closed, what hexadecimal
number is read from the switch bank?

4. RefertoFigure8-1.1f S, is closed, what hexadecimal number is read
from the switch bank?

5. What two things can be determined by the hexadecimal number
read in from the switch bank?

6. Why is debouncing required?

How can the MPU overcome the effects of contact bounce?

~

8. Refer to Figure 8-3. To what address does the center row of keys
respond?

9. Refer to Figure 8-5. What is the purpose of the first 18 lines of the
program?

10. What technique is used for finding the hexadecimal equivalent of
the key that is depressed?

11. Refer to Figure 8-8. How does this routine overcome contact
bounce?

HEATHKIT
CONTINUING

Interfacing — Part 2 J 8'1 9

—Egm; Eosie

ANSWERS

1. The MPU must: 1) Address the switches.
2) Detect contact closure.
3) Overcome contact bounce.
4) Decode the switches.

2. A three-state buffer.

3. FFy.
4. FB,.
5. The hexadecimal number read from the switch bank reveals

1) If a switch is closed.
2) Which switch is closed.

6. When a mechanical switch is closed, its contacts often bounce open
and closed several times. Unless this is taken into consideration, a

single switch closure can be mistaken for multiple switch closures.

7. The MPU can overcome the effects of contact bounce by rechecking
the closed switch several times.

8. C005 .

9. The first 18 lines of the program place the switch pattern into
accumulators A and B.

10. They are looked up in a table.

11. By rechecking the closed switch. It must find the switch closed for
20,5 consecutive checks before the value is accepted as good.

8-20| uniT EiGHT

THE PERIPHERAL INTERFACE ADAPTER (PIA)

Most microprocessors have a family of support chips that are used to
simplify the problem of interfacing with the outside world. One of the
most popular of these interfacing chips is the 6820 peripheral interface
adapter (PIA). The PIA was developed to support the 6800 MPU. How-
ever, it is also being used in many microprocessor based designs using
other MPU’s.

While a complete discussion of support chips is beyond the scope of this
course, detailed data sheets on several support IC's are included in
Appendix B.

In this section, you will be introduced to the PIA. You will learn enough
about it to use it in the experiments that follow.

The block diagrams of two typical systems that use PIA’s are shown in
Figure 8-9. In Figure 8-9A a single PIA is used to drive both an input and
an output device. This is possible since the PIA has two independent
channels. Figure 8-9B shows a system that uses two PIA’s. One controls
an input device while the other controls an output device.

ADDRESS BUS

L -

<:] INPUT
DEVICE

IMICRO- .
A PROCESSOR RAM

ROM Pl1A
)
DATA BUS

ADDRESS BUS l
MICRO- INPUT D ouTPUT
B forocessor RAM ROM PIAL O DEVICE PiA 2 DEVICE

vt (T

DATA BUS

Figure 8-9
The PIA is used to interface input and
output devices to the MPU.

HEATHKIT
CONTINUING

Interfacing — Part 2

The purpose of the PIA is to simplify the problem of interfacing the MPU
to external devices. Of course, any device can be interfaced with the MPU
using conventional combinational logic. However, the conventional
logic approach generally requires many IC’s. This defeats one of the
prime advantages of the microprocessor — a simple straightforward
design requiring few IC’s. The advantage of the PIA is that in many cases
one or two IC’s can do all the interfacing.

Because the PIA can do most routine peripheral control tasks, the MPU is
freed to handle more important tasks. Also, the PIA allows the MPU to
treat a peripheral device as a memory location. In addition, it acts as a
buffer between the high-speed MPU and the low-speed I/O device. Since
the PIA has some on board address decoding, a separate address decoder
is not needed in many applications. :

The PIA is superior to combinational logic in another way. The PIA is
extremely flexible because it is programmable. That is, its configuration
can be changed from one moment to the next by the program being
executed. For example, an output port can be changed to an input port in
the middle of a program. Later, you will see how this is done. But first,
you will learn about the internal structure of the PIA.

I/O Diagram

The diagram of the PIA shown in Figure 8-10 shows its input and output
lines. Since this is an interface device, one side connects to the MPU
while the other side connects to one or more peripheral devices.

1
1
i
N MPU | PERIPHERAL
M SIDE 1 SIDE
1
1
1
1
{
L"——IRQA : CAl ———e—
N TRGE : CA2 gt
A A
- :_‘:) D80 - DB7 : PAG - PAT C_—__:>
1
N e RSO ! SIDE
N [~ RS1 Peripherai |’ A
e{ |~ CSO Interface fmerrm——ocn—
- Adapter |
e cs1 a1l SIDE
Mo iy CS2 : B
| P8O - PBY <:>
Nt A/W :
- N8 Enable | cB2 e
3| 3| e A : CB1 fu—r
w al [= i
2 g1
st 2| 1E
3l <]s
s s
v

Figure 8-10

1/O diagram of the peripheral interface

adapter.

8-21

8-22

UNIT EIGHT

HEATHKIT
CONTINUING

On the MPU side, the PIA monitors several address, data, and control
lines of the MPU. It monitors all eight data bus lines. Data is transferred to
and from the PIA, a byte at a time, by the data bus. For thisreason, the PIA
is said to be “byte oriented.” In this respect, the PIA is treated like
memory. As you will see later, the PIA has four addresses that can be
treated much like RAM.

The PIA can monitor five of the MPU’s address lines. This is enough to
partially decode the address. In many cases, no additional address decod-
ing is necessary.

The PIA also connects to several control lines. The R/W line informs the
PIA whether it is to receive data from the MPU or send data to the MPU.
Once again, note the similarity between the PIA and RAM.

Another similarity is the enable line. Like RAM, the PIA is enabled by the
¢2 clock (often ANDed with VMA). This provides the basic timing signal
for the PIA.

Thereset line of the PIA is generally connected to the master system reset.
This allows the PIA registers to be reset to a known condition at the same
time the MPU is reset.

The PIA has two interrupt request lines. These allow the PIA to request
service from the MPU. These may connect to either the IRQ or the NMI
lines of the MPU. As you saw earlier, interrupts can be used to simplify
I/O operations and to save MPU time. While the interrupt capability of the
PIA is not discussed in this unit, the PIA data sheet in Appendix B briefly
outlines these capabilities.

The peripheral side of the MPU has two nearly identical I/O channels.
PA, through PA; make up a peripheral data bus for the A side of the PIA.
CA, and CA, are two control/interface lines associated with the A side.
Notice that the B side has comparable data and control lines. Do not
confuse the peripheral data buses on the right with the MPU data bus on
the left. Both buses will be referred to frequently in the following discus-
sion.

Interfacing — Part 2] 8‘23

PIA Registers

The A and B sides of the PIA are nearly identical. Except when noted,
everything stated about one side of the PIA also applies to the other side.

Each side of the PIA has three main registers as shown in Figure 8-11.
These include an output register (OR), a data direction register (DDR),
and a control register (CR). The output register is used to hold a data byte
that is being transferred to the peripheral data bus. It acts as a temporary
storage location for data being transferred from the MPU to the peripheral
device. :

The data direction register sets up the individual lines in the peripheral
data bus as either inputs or outputs. Each bit in the DDR controls the
corresponding peripheral data line. A 1 in a specific bit of the DDR causes
the corresponding peripheral data line to act as an output line. A 0 causes
it to act as an input line.

Tosetup all eight peripheral data lines of the A side as inputs, we simply
store 00,5 in the DDR of the A side. By the same token, we can set up the B
side as output data lines by storing FF,s in the DDR of the B side. The
various data lines can be set up in any combination. Moreover, a
peripheral data line can be changed from input to output simply by
changing its corresponding bit in the data direction register. Keep in
mind, that this change is made by software. No hardware change is
necessary.

The control register allows you to program several other characteristics of
the PIA. One of these will be discussed later. The others are explained in
the PIA data sheets in Appendix B.

1/2 OF THE PIA

[T T T T dsesisten o®

l l I [I rl L DATRAEGDIISRTEECRTION (DDR)

0 I O Y

Figure 8-11
Each side of the PIA has three main
registers.

8-24 l UNIT EIGHT

Addressing the PIA Registers

The PIA has six registers in which data can be stored and from which data
can be read. The two control registers each have an address of their own.
In a typical system, the control register on the A side may have an address
of 4005,,. The control register on the B side may have an address of
4007 . In this case, we could write data into the control register on the A
side with the instruction STAA 4005,,. Or, we could read from the control
register on the B side with LDAA 4007 .

While the control register has an address of its own, the data direction
register and the output register share a common address. Typically, the
data direction and output register on the A side may share the address
4004, Those on the B side may share the address 4006, Thus, in a
typical system, the PIA may have addresses assigned as shown in Figure
8-12.

Even though the data direction and output registers share the same
address, each is still individually accessible. When address 4004 appears
on the address bus, either ORA or DDRA will be selected depending on
bit 2 of the control register. If bit 2 of CRA is a 1, then address 4004,4
selects ORA. However, if bit 2 of CRA is 0, then address 4004 selects
DDRA. In this same way, bit 2 of CRB determines which register is
selected by address 4006,5. A 1 selects the output register: a 0 selects the
data direction register.

ADDRESS
Hl ! I l TL OUTPUT[ORRE'E)ISTERA
4004
SIDE A TTTTTTT11 DATA DIRE%TDtRoAN)REmsrzRA
B,
4005 li [1] l*[I CONTRO'LCSE(,JISTERA
OUTPUT REGISTER 8
LI TPl T T | eS
1006
SIDE B [L]] Ll]]DATA mR([é:DT;griq REGISTER B
B,
a7 [] {1 [*FI]CONTRO(LCRR;)GISTERB

Figure 8-12
Typical address assignments of PIA
registers.

HEATHKIT
CONTINUING
__EDUCATION
e

Interfacing — Part 2

Initializing the PIA

Before the PIA can be used for input-output transfers, it must first be
programmed to operate in the desired manner. For example, assume that
you wish touse the A side of the PIA as an output port and the B side as an
input port. Figure 8-13 shows a PIA that is configured in this manner.
DDRA sets all A-side peripheral data lines as outputs and bit 2 of CRA has
set the output register to respond to address 4004. DDRB sets all B-side
peripheral data lines as inputs and bit 2 of CRB has set ORB to respond to
address 4006. This state does not come about by accident. We must
deliberately set up these conditions. This process is called initializing the
PIA.

In most applications, the PIA is initialized after a system is reset. Once
configured in a certain way, the PIA is normally left in this configuration.
For this reason, you can assume that the initialization process starts
immediately after the system is reset.

ADDRESS

[} I l 1 l [[JOUTPUT:ORREAG)ISTERA

4004
DATA DIRECTION REGISTER A
SIDE A ppefepefeqefrjr] IlDDRAﬂ o

B
2
4005 [0]0]0]0]0]1]0]0] CONTROL RECISTER A

LT T TTT IJOUTPUI(ORREBG)IS"ERB

4006
DATA DIRECTION REGISTER 8
SIDE B (oJojojofofojojo {DDREB!
8
2

CONTROL REGISTER B
s07 [o]oJofo]oJ1ToJo R,

Figure 8-13
The A side is configured as an output
port; the B side, as an input port.

8-25

8-26

UNIT EIGHT

HEATHKIT
CONTINUING
EDUCA

The PIA has a reset line that is normally connected to the system reset
line. When the PIAs’ reset line goes low, all the registers in the PIA are
reset to zero as shown in Figure 8-14. With both data direction registers
reset to zero, both peripheral data buses are configured as inputs. Also,
with bit 2 of the control registers reset to 0, address 4004 selects DDRA
while 4006 selects DDRB. To initialize the PIA, we must change the
contents of its registers from that shown in Figure 8-14 to that shown in

Figure 8-13.

A program that will accomplish this is:

LDAA
STAA
LDAA
STAA
STAA

ADDRESS

#FF
4004
#04

4005
4007

[o]o[o]0 00 0 0] o} P!T REG!STER 4

4004

SIDE A LOIOIOEOIOIOLOIOIDATA DIRECTION REGISTER A

(DDRA)

B

2
4005 [0101010]010[0[0 CONTRO(LC:SISTER A

lolololoioIoIo]olouTPUT REGISTER B

4006

(ORB)

SIDE B lolololololo]OlOJDATA DIRE(?JA(B)? REGISTER B

)

001 [0J0J0]0]0]G]0]0] CONTROL REGISTER B

(CRB)

Figure 8-14

When the PIA is reset, all registers are

set to zero.

HEATHKIT
CONTINUING

Interfacing — Part 2

The first instruction loads accumulator A with all binary 1’s. The second
instruction stores this at location 4004 . Since bit 2 of CRA is initially 0,
FF is stored in DDRA. This configures the A-side peripheral data bus as
outputs.

The third instruction loads 04, into accumulator A. The next two in-
structions store 04,4 at addresses 4005,; and 4007 ;5. These addresses are
the control registers. Recall that 04,4 is equal to 0000 0100,. This sets bit 2
of both control registers to 1. Consequently, address 4004,; now specifies
ORA while 4006,; now specifies ORB.

Asyou can see, the PIA is now set up as shown in Figure 8-15. Notice that
we did not have to change the contents of DDRB in this case because it
was initially reset to zero.

Once the PIA is configured in this manner, the MPU can transfer data to
the output port using the instruction: STAA 4004 . Also, it can read data
from the input port using the instruction: LDAA 4006 .

PA7 PERIPHERAL DATA
BUS A IS

CONFIGURED
FOR QUTPUTS
s =
sS BUS=—=f
L PIA PB; PERIPHERAL DATA
0 E BUS 8 1S
i CONFIGURED
TO/FROM FOR INPUTS
MPU P8,
DATA BUS
Og
Figure 8-15

The initialization procedure contfi-
gures the PIA as shown.

8-27

8-28 l UNIT EIGHT cmn:gaﬂc

Addressing the PIA

Figure 8-16 shows how the PIA fits into a microprocessor system. Now
consider how the PIA is addressed.

The PIA has three chip select lines (CS0, CS1, and CS2). These three lines
are used to select the PIA. In order for this particular PIA to be selected,
CS0 and CS1 must be high while CS2 must be low.

Notice that these three lines are connected to three of the address lines
(A2, A14, and A15). In this application, the A14 line is ANDed with the
VMA line. This ensures that the PIA is selected only if the address is
valid. In the following discussion, assume that all addresses are valid.

(W(Qﬁa

START ' ——
uP RESET
B8A

DBE

02

080-D87

ﬁ&\ mﬁ
D

21 MPU
TSC

CLOCK

I—
e
5 v—'t: HECT

NmI

o

AAA T TSN UTRNSITISYY

vMma w

AG- AlS

<

MA

AQ- A9 0B0-DB7

_
NN

ROM VMA. 32 A
13 E
1
0
AG-A6 080-D87 C s y
e 15 E’
E AW LB ’}‘
Figure 8-16 - g %
A microprocessor system using a PIA. - b Y, /
RS1 0B80-0B7 ‘._A;

cso
| ﬁ Pta E
cs2 RES

AN XY

T

CA2 IRQ8
CAl PA P8 CB1 CB2

s}

W._J_—V—/

PARALLEL i/0 (OATA AND CONTROL)

Interfacing — Part 2

The PIA will be selected by any address in which A2 and A14 are high
and A15 is low. Hexadecimal addresses like 4004, 5004, 6004, 7004, etc.
will select the PIA because the above conditions are met. Actually, there
are thousands of addresses that will select the PIA. Even so, in many
systems this is no problem. In the application shown, any address below
3FFF s will select the RAM. Many addresses between 4004 ,; and 7FFF
select the PIA. Finally addresses above C000,4 select the ROM. Neither
the ROM, the RAM, nor the PIA is fully decoded. Even so, their addresses
are unique enough that each can be selected without additional decod-
ing.

For programming purposes, we must assign the PIA four consecutive
addresses. We will assume that these addresses are 4004,; through
4007 c. Notice that we could have just as easily selected addresses 6004 4
through 6007 .

In addition to the chip select lines, the PIA has two register select lines
(RS0 and RS1) that also connect to the address bus. RS0 connects to AQ
while RS1 connects to A1. The RS1 line determines which side of the PIA
is selected. When RS1 isatlogic0, side A is selected. When RS1 is at logic
1, side B is selected.

The RSO line selects the register on the affected side. When RSO0 is 1, the
control register is selected. When RSO0 is 0, the data direction register or
the output register is selected depending on the state of bit 2 of the control
register.

8-29

8-30| unirEiGHT

BINARY EQUIVALENT

HEX OF LAST HEX DIGIT REGISTER SELECTED
ADDRESS

4004 DDRA or ORA*

4005 CRA

4006 DDRB or ORB*

4007 CRB

*Determined by bit 2 of CR
0 = DDR
1 = ORA

Figure 8-17
The relationship between the address
and the register selected.

The chart shown in Figure 8-17 shows why the various registers are
selected for the addresses shown. For example, when the address is
4007, address lines 1 and 0 are both high. Thus, both RS0 and RS1 are at
logic 1. The 1 at RS1 selects the B side of the PIA. The 1 at RSO selects the
control register. Thus, the address 4007 4 selects the control register on
the B side. Figure 8-18 illustrates the same thing in another way. It shows
how the data path between the MPU and the PIA register is determined.

A SIDE B SIDE

CRA

L«RSO-O» T emRs0-1ep RS0 0> R0 1>
*cRazis BiT2 OF J *cRB2 1S BIT 2 OF
CONTROL REGISTER A “=Rs1-0p 4=RS1-1=p CONTROL REGISTER 8

DATA PATH BETWEIN
MPU AND FIA
RESGISTERS

<

Figure 8-18
How the data path between the MPU
and the PIA register is determined.

HEATHKIT

m% Interfacing — Part 2 8'31

Self-Test Review

12. What is the peripheral interface adapter (PIA)?
13. How is the PIA superior to combinational logic?
14. What is the internal structure of the PIA?

15. How is the PIA reset?

16. What are the contents of the PIA registers immediately after being
reset?

17. How does the MPU decide which side of the PIA is selected?

18. Once the MPU has selected one side of the PIA, how does it
determine which of the three registers is connected to the data bus?

19. Which pin of the PIA is normally connected to the A1 address line
of the MPU? :

20. Refer to Figure 8-16. Write a short routine that will initialize the
PIA immediately after reset. Set up PAO through PA3 and PBO
through PB3 as inputs. Set up PA4 through PA7 and PB4 through
PB7 as outputs.

8-32

UNIT EIGHT

HEATHKIT
CONTINUING
TION

ANSWERS

12.

13.

14.

15.

16.

17.

18.

19.

20.

The PIA is a 40-pin IC that is used to simplify the transfer of data
between a microprocessor and the outside world.

In many cases, one or two PIAs can handle all interfacing require-
ments. Also, the PIA is extremely flexible since it can be program-
med to perform in several different configurations.

The PIA has twonearly identical sides, each of which contains three
registers: the output register, the data direction register, and the
control register. The MPU can transfer data to or from either of these
registers by way of the data bus.

The PIA is reset by pulling its reset line low.
When reset, the contents of all PIA registers are reset to 00,.

The MPU selects the A side of the PIA by switching the PIA’s RS1
lineto 0 (low). The Bsideis selected by switching theRS1 lineto 1.

If the RSO line of the PIA is 1, the control register of the affected side
is selected. If RSO is 0, then the register selection is determined by
bit 2 of the affected control register.

RS1 of the PIA is normally connected to address line A1 of the
MPU.

A typical routine is:

LDAA #F0
STAA 4004
STAA 4006
LDAA #04
STAA 4005
STAA 4007

Interfacing — Part 2

USING THE PIA

Now that you are familiar with the PIA, you are ready to examine some of
the ways that the PIA can be used. In this section, you will see how the
PIA can be used.to handle displays and keyboards. You will start by
examining how a PIA can be used to drive 7-segment displays.

Driving 7-Segment Displays

Figure 8-19 shows how a single PIA can be used to multiplex up to eight
7-segment displays. The PIA is configured to respond to addresses 40045
through 4007 . The A side of the PIA is used to supply the 7-segment
code to the displays. Inverters are used to supply the current required by
the displays. The B side is used to determine which display is selected.
Here discrete transistors are used to provide the required current.

The displays are common cathode types. To light segment ““a” of display
1, Q, must conduct through pin ““a.” Thus, a logic 1 must be applied to
the base of Q, and to pin “a” of display 1.

Notice that both sides of the PIA must serve as outputs. Thus, during the
initialization procedure, both data direction registers are set to FF,s. Then
bit 2 of both control registers are set to 1's, so that data would be routed to
the output registers.

All displays are blanked by storing FF 4 in output register A. This sets
PAO through PA7 to 1's. The 1's are then inverted to 0’s. Thus, no
segments of any display can light.

To display a specific eight-character message, the displays must be
turned on one at a time in sequence. This is controlled by the B side of the
PIA. Atthe same time, the 7-segment character codes must be loaded into
the A side of the PIA one at a time.

8-33

8-34 | unreiGHT by

DISPLAY O
| 0

— b

r<) <]
P W &

. <

w

o

=

£

3
o=

— D

|SPLAY

4004 -4007 I l
— O
Ag—ARs0 PAD& 7 ‘\
Ajl—rS1 PA I
! ! DISPLAY 2
AjyedqCs0 Pa2 a ;
Alg—ics: P A3 = '—'"
Als —Cs2 PAg Lt
P RS 2 ’._’.,
—dq 0y PAI—-—{>0————— 3
—_ DISPLAY 3
—_f 0 L a 4
0 = —
wey J —103 PBO I l
pata | 0y P81 5, I ’
BUS D 082 —le
—q 0 P63 4) 5
— 7 P84 % SISPLAY &
P8S = ;L‘J’
J2—— ENABLE °86 , ’
RESET] RESET 287 "", N
RIW— rIW Q4 L—.v
g DISPLAY 5
T—e
s
g 9

[l
a 3 I I

—0

ISPLAY 7

Figure 8-19
Using the PIA to multiplex displays.

-
|
_l
o
ll}—-(i
o

4

interfacing — Part 2

A subroutine for multiplexing the displays is shown in Figure 8-20. It
assumes that the eight 7-segment codes are already in RAM at consecu-
tive addresses, SGCODE through SGCODE +7.

The first instruction loads the index register with one less than the
address of the 7-segment code for the first character. Next, accumulator B
is cleared and the carry flag is set to 1. Accumulator A is set to FF 4 by first
clearing to 00,5 and then complementing. The FF,; in accumulator A is
stored in the output register of the A side of the PIA. This sets PAO
through PA7 to 1’s. The ones are inverted and blank all the displays. The
displays are blanked by side A whenever the display pointer (side B) is
being changed.

The next instructions rotate accumulator B to the left through the carry
flag. Recall that accumulator B was originally cleared and that the carry
flag was set. Thus, the 1 in the carry flag is rotated into bit 0 of ac-
cumulator B. The new contents of accumulator B are stored in the B side
of the PIA. PBO is set to 1 while PB1 through PB7 are reset to 0. The 1 at
PBO enables display 0. However, the display still does not light because
the segment lines are still at logic 0.

LINE ASSEMBLY CODE COMMENTS
1 DISPLAY LDX #SGCODE-1 Point to first code minus one.
2 CLRB Initialize the
3 SEC display pointer
4 NXDIGIT CLRA Set ACCA
5 COMA to FF
6 STAA PIAORA Turn off all displays
7 ROLB Point to next display in sequence.
8 STAB PIAORB Enable next display in sequence.
9 BCC NXTDSP If last display has been lit,
10 RTS exit. Otherwise,
11 LTDSP INX point to next 7-segment code
12 LDAA O0OX Load code into ACCA.
13 STAA PIAORA Display the code.
14 CLRA Leave this
15 DELAY INCA display lit for
16 BNE DELAY 1536, MPU cycles.
17 BRA NXDIGIT Go back and do it again.
Figure 8-20
Subroutine for multiplexing the dis-
plays.

8-35

8-36

UNIT EIGHT

The next instruction (BCC) checks the carry flag to see if it is cleared. It
will be in this case because a 0 was rotated into it by the earlier ROLB
instruction. Consequently, the RTS instruction is skipped over and the
INX instruction is executed next.

The INX instruction increments the contents of the index register so that
it now points at the 7-segment code for the first character that is to be
displayed. The next instruction loads this character into accumulator A.
Then the 7-segment code is stored in output register A of the PIA. The
code is inverted and is applied to the segment lines of all eight displays.
However, only display 0 is presently enabled. Thus, this is the only
display that will be lit.

The next three instructions cause a delay of about 1536,, MPU cycles. In a
typical system, this amounts to a delay of about 2 milliseconds. Finally,
the BRA instruction branches the program back to the point called
NXDIGIT.

At NXDIGIT, the displays are blanked again. Accumulator B is rotated to
the left so that the 1 now appears at bit 1. This is stored at PIAORB,
enabling display 1 and disabling all other displays. The carry flag is still
cleared, so the RTS instruction is skipped. The next 7-segment code is
selected and stored at PIAORA. Thus, the second code lights display 1.
The display is held lit for about 2 milliseconds and the loop is repeated
again.

Thedisplay loop continues until all eight displays have been lit. After the
final display is lit, the program tries to repeat the loop again. However,
this time, the 1 in accumulator B is rotated back into the carry flag. As a
result, the BCC instruction does not cause a branch. The RTS instruction
is executed and the program returns to wherever it came from.

In order to give the illusion of a constant display, this subroutine must be
called several times each second. The display must be constantly re-
freshed by rewriting the same message over and over again.

Interfacing — Part 2

Decoding Keyboards

Figure 8-21 illustrates how the PIA can be used to decode a 16-switch
keyboard. The chip select lines are connected so that this PIA responds to
addresses 4008, through 400B .

One switch is connected to each of the peripheral data lines of the PIA.
When a switch is open, its corresponding peripheral data line is pulled
up to logic 1 by the pull-up resistor. When a switch is closed, the
corresponding peripheral data line falls to logic 0. In this application,
both sides of the PIA act as input ports. Since they are automatically set
up as inputs during reset, there is littleto be done during initialization. Of
course, bits 2 of the control registers must be set to 1 so that the input data
from the keyboard can be read from addresses 4008,; and 400A .

The problems associated with decoding the keyboard are the same as
those discussed earlier. Because this keyboard does not use interrupts,
the MPU must scan the keyboard at regular intervals. Typically, it would
read from addresses 4008,; and 400A ¢ several times each second.

The MPU detects a switch closure by comparing the input data with FF .
If the input data is anything other than FF ¢, one (or more) of the switches
is closed.

T
3183 J 3 <1 3133
3 4 38|33
4008-4008 -J
Ag——qRS0 P AD —]
Al ——qRS1 PAL
Az ——cso PA2 I
Ala—cst PA3
Ays—Cs52 P A4 —--—r
P A5 e
P A6 T
p— 00 PA7
—]0,
— [)2
-0, PBO
—10, P8 1 p—ere————_
—0, PB2
—qD Psa——-l
— 067 PB4
PBS j
g2 ——d ENABLE PBS
RESET==—d RESET Pai_l
R/W-——-‘:IW_-——]

PIA

Figure 8-21
Using the PIA to monitor a keyboard.

8-37

8-38

UNIT EIGHT

HEATHKIT
CONTINUING

The MPU overcomes the switch bounce problem in the same way dis-
cussed earlier. Also, the problems of rejecting multiple switch closures
and producing an equivalent binary code can be accomplished using the
same techniques discussed previously in this unit.

Decoding a Switch Matrix

The method shown in Figure 8-21 is a very straightforward technique of
decoding switches. Using one PIA, this technique can handle up to 16
switches. There are other techniques that use the PIA to greater advan-
tage. Anexampleis shown in Figure 8-22. Here again, the PIA is handling
16 switches. However, this time only one side of the PIA is used.

+5V

Rs2 Res Ré Rgs
Ry C— D— E— F-
f‘”"“' 9 o4 9 o9 9 o9 9o o9
PBO > - - y
i . 18 9 A B
2 — - — o
‘[-Mov—ii i o9 i o9 i o—e ? o9
PB1 - &
Ry 4— 5— 6— 7—
[—m—o 2 o9 i o9 i o—e ? o9
P82 . & -
8 SIDE o ° o9 1 2 3
,HEOFPM o L-'Nd L o o-¢ i o 9 o9
PB4
PBS
P86
PB7
Figure 8-22

Oneside of the PIA can handleupto 16
switches.

HEATHKIT
CONTINUING

Interfacing — Part 2

EDUCATION
R e

The 16 switches are arranged in a 4 by 4 matrix. The B side of the PIA is
used to interface with the switches. Lines PB0O through PB3 are confi-
gured as input lines while PB4 through PB7 are configured as output
lines.

With no switches closed, PBO through PB3 are pulled up to logic 1 by
resistors R, through R,. PBO monitors switches C, D, E, and F. When all
four switches are open, PBO is at logic 1. Even with one of the switches
closed, PBO will still be at logic 1 if output lines PB4 through PB7 are at
logic 1. And, these output lines (PB4 through PB7) are normally held at
logic 1.

Periodically, the MPU scans the keyboard to see if any switch has been
closed. It does this by applying logic 0 to one of the output lines and then
checking for a logic 0 at one of the input lines.

A typical procedure might look like this. When the PIA is initialized, PBO
through PB3 are set up as inputs while PB4 through PB7 are set up as
outputs. The MPU scans the keyboard in this manner. PB4 is reset to 0 by
storing EF ;s in output register B. Next, the B side is read out. If switch 0, 4,
8, or C is closed, its corresponding PIA input line will be low. For
example, if switch 8 is closed, the 0 at PB4 will pull PB1 low. By
examining lines PBO through PB3, the MPU can tell which switch (if any)
is closed.

If no switch is closed in the first column, PBS is reset to 0 by storing DF ;¢
in output register B. The MPU can now check to see if switch 1,5,9,or D is
closed.

The technique just described allows the MPU to handle a large number of
switches with a single PIA. Using both sides of the PIA, the MPU could
handle an 8 by 8 matrix of 64,, switches. This technique will be explored
in more detail in an interfacing experiment.

8-39

8-40

UNIT EIGHT

Self-Test Review

21.

22.

23.

24.

25.

26.

27.

28.

Refer to Figure 8-19. Write a short program that will initialize the
PIA in the proper configuration.

Refer to Figure 8-19. Which side of the PIA determines which
display is selected?

Refer to Figure 8-19. Assume that the PIA has been properly in-
itialized. Write a simple program segment that will display the

numeral 4 on display number 7.

Refer to Figure 8-21. In order for this scheme to work, both sides of
the PIA must be configured as

Refer to Figure 8-21. How does the MPU tell that switch 9 is closed?
How can the B side of the PIA be set up as shown in Figure 8-227
Refer to Figure 8-22. How does the MPU tell that switch 7 is closed ?

If both sides of the PIA are used, how many switches can be
handled using the matrix technique? '

HEATHKIT
CONTINUING

EDUCATION
=T

Interfacing — Part 2

ANSWERS

21.

22.

23.

24.

25.

26.

27.

Assuming that the PIA was initially reset, a typical initialization
routine would be:

LDAA #FF
STAA 4004
STAA 4006
LDAA #04

STAA 4005
STAA 4007

The B side.

Keep in mind that Q; must conduct and that pins b, ¢, g, and f must
be high. Thus, the following instructions could be used:

LDAA #80
STAA 4006
LDAA #99
STAA 4004

inputs.

The MPU reads in data from both sides of the PIA and compares this
data with several different bit patterns. If switch 9 is closed, the bit
pattern from the B side will be FD,,.

The output register of the B side is configured in this manner
during the initialization process by storing OF ;4 in the B side data

direction register.

The MPU periodically resets line PB7 to 0. If PB2 is subsequently
found to be 0, the MPU knows that switch 7 is closed.

Up to 64 .

8-41

8-42

UNIT EIGHT

INTERFACING EXPERIMENTS

The interfacing experiments are included in Unit 10 of this course. Go to
Unit 10 and perform experiments 5 through 9. Some of these experiments
are quite involved and you should not attempt more than one experiment
per sitting.

HEATHKIT
CONTINUING

EDUCATION

Interfacing — Part 2

UNIT EXAMINATION

1.

In some microcomputer systems, input data from a keyboard is
read repeatedly before it is accepted.

oowp

This speeds up the MPU.

This prevents two keys from being read at once.
This overcomes contact bounce.

All the above.

Refer to the program shown in Figure 8-5. Assume that key 6 is
depressed. What hex number will be in accumulators A and B
after the COMB instruction at line 18 is executed?

A.
B.
C.
.D.

ACCB = 40,5, ACCA = 00,
ACCB = 60,5, ACCA = 00,
ACCB = 06,5, ACCA = 00,
ACCB = 004, ACCA = 06

The purpose of the PIA is to:

A.
B.
C.

D.

Simplify the problem of interfacing the MPU to the ROM.
Simplify the problem of interfacing the MPU to the RAM.
Simplify the problem of interfacing the MPU to input/output
devices.

Act as a universal input/output device.

The advantage of the PIA over conventional combinational logic

circuits is:

A. Generally, fewer IC’s are required.

B. The PIA is more flexible since its characteristics can be
changed by the program.

C. Inmany cases, the PIA requires no separate address decoder.

D. All the above.

The A side of the PIA is selected when:

A.
B.
C.
D.

RS0 = 0.
RSO = 1.
RS1 = 0.
RS1 =1

To select output register A of the PIA:

SOwp

RSO must be 0 and bit 2 of control register A must be 0.
RS0 must be 1 and bit 2 of control register A must be 0.
RSO must be 0 and bit 2 of control register A must be 1.
RSO0 must be 1 and bit 2 of control register A must be 1.

8-43

8‘44[UNIT EIGHT

7.

When the PIA is reset:

A. Both sides are configured as outputs.

B. Both sides are configured as inputs.

C. The A side is configured as outputs while the B side
configured as inputs.

D. The B side is configured as outputs while the A side
configured as inputs.

is

is

8. Refer to Figure 8-19. Which of the following sequences will cause

display 4 to display the number 1.

A. LDAA #01 B. LDAA #9F C. LDAA #60 D. LDAA
STAA 4004 STAA 4004 STAA 4004 STAA
LDAA #04 LDAA #10 LDAA #10 LDAA
STAA 4006 STAA 4006 STAA 4006 STAA

9. Refer to Figure 8-19. All displays can be blanked by storing:

10.

FF at address 4004.

00 at address 4006.

FF at address 4004 and 00 at address 4006.
Any of the above.

SOwx

#10
4004
#04
4006

Refer to Figure 8-22. An indication that switch A is closed is:

PB1 goes low when PB6 goes low.
PBO through PB4 are all high.

PB1 goes low when PB6 goes high.
PBO goes low when PB6 goes low.

SOwx

