HEATHKIT
CONTINUING
EDUCATION

Yool

Individual Learning
Program

MICROPROCESSORS

Unit 9
PROGRAMMING EXPERIMENTS

EE-3401

Copyright © 1977

HEATH COMPANY P
eath Company

BENTON HARBOR, MICHIGAN 49022 All Rights Reserved
Printed in the United States of America

9-2

HEATHHIT

UNIT NINE (gﬁzgirulgi'?
CONTENTS
Introduction Page 9-3
Experiment 1. Binarv/Decimal Training Program Page 9-4
Experiment 2. Hexadecimal/Decimal Training Program Page 9-11
Experiment 3. Straight Line Programs Page 9-19
Experiment 4. Arithmetic and Logic Instructions Page 9-35
Experiment 5. Program Branches Page 9-45
Experiment 6. Additional Instructions Page 9-80
Experiment 7. New Addressing Modes Page 9-100
Experiment 8. Arithmetic Operations Page 9-109
Experiment 9. Stack Operations Page 9-116

Experiment 10. Subroutines Page 9-127

Programming Experiments J 9‘3

UNIT 9

PROGRAMMING EXPERIMENTS

INTRODUCTION

This Unit contains ten programming experiments that are to be run on the
Microprocessor Trainer. At the end of Units 1 through 6, you will be
instructed to perform one or more of these experiments. Do not confuse
these with the Interfacing Experiments which are in Unit 10.

The early programs given in this Manual are extremely simple. The later
programs are more complex, but you will be able to accomplish them as
you become familiar with the instruction set and programming
techniques. Before you finish this course, you will be writing programs
that will turn the trainer into a clock, a musical instrument, a digital
voltmeter, etc.

When you complete an experiment, return to the activity guide of the unit
that directed you to the experiment. This is important because you will be
jumping from one point to another quite frequently.

9-4

UNIT NINE

HEATHMIT
CONTINUING
_EDUCATION

Nt

Experiment 1

BINARY/DECIMAL TRAINING PROGRAM

OBJECTIVES:

To improve your ability to convert binary numbers to their
decimal equivalent.

To improve vour ability to convert decimal numbers to their
binary equivalent.

To present the proper precedure for entering a program into the
ET-3400 Microprocessor Trainer.

To demonstrate the versatility of the ET-3400 Microprocessor
Trainer and microprocessors in general.

Introduction

[n Unit 1, vou were introduced to the binarv number system. As vou
proceed through this course, yvou svill find the need to convert binarv
numbers to decimal. and decimal numbers to binary. To improve vour
abiiity to make these conversions. vou will enter a program into the
Microprocessor Trainer to allow it to act as vour instructor. In the first
half of this experiment, vou will use the Trainer to practice binary-to-
decimal conversion.

When vou use the Trainer, carefully follow all of the operating instruc-
tions. A microprocessor can only perform properly if it is programmed
properly. However, vou do not need programming experience at this
time; just follow the instructions provided in this experiment. Do not
worry about what vou are entering.

The Trainer Manual contains a great amount of useful information in the
Operation Section. You should review that section before vou proceed
with this experiment.

Program Experiments

If your Trainer has been modified for use with the Heathkit Memory I/O
Accessory, unplug the Trainer from the AC wall receptacle. Disconnect
the 40-pin plug that connects the Trainer to the Memory I/O Accessory.

If your Trainer is Model number ET-3400, reinstall the 2112 RAM IC’s at
IC14 through IC17 before starting the experiments in this unit.

If your Trainer is model number ET-3400A, reinstall the 2114 RAM IC’s at
IC14 and IC15 before starting the experiments in this unit.

9-4.1

HEATHKIT
CONTINUING

Programming Experiments 9‘5

Procedure

1. Plugin the Trainer and push the POWER switch on. Then momen-
tarily press the RESET key. The display should show CPU UP.

2. Push the AUTO (automatic) key. Displays H, I, N, and Z will show
“prompt’”’ characters (bottom segment of each digit illuminated),
and displays V and C will show Ad. NOTE: The letters identifying
each display are located near their bottom right corners.

- 3. Push the 0 key three times. 0's will appear in displays H, [, and N.

4. Push, but do not release the 0 key. A 0 will appear in display Z. Now
— release the key. The 0 will not change, but displays V and C will
now show prompt characters.

— NOTE: The Trainer is now ready to receive program data. If you
make a data error while entering the program, do not attempt to
correct the error; continue programming. Any errors will be located

- and corrected when you examine your program.

5. Using the Trainer keys, enter the Binary-to-Decimal training pro-

— gram shown in Figure 9-1. At each address specified, press the

appropriate inst/data (program instruction or data) number keys

(most significant number first). Displays V and C will show the

— inst/data word vou have entered. Note that as you release the

second data key, address displays H, I, N, and Z will increment

(count up one), and displays V and C will again show prompt

— characters. When you get to the end of the program, press the
RESET key as indicated.

9-6

HEATHIIT

UNIT NINE CEODEIE_%H’?
ADDRESS INST'DATA ADDRESS INST:DATA g* ADDRESS INST/DATA
0000 0o* 0029 e 0052 00
00901 00* 00ZA 63 0053 3B
0002 BD 0028 00 0034 4F
0003 FC 002C 00 0055 DB
6004 BC oD G0 0056 BD
0005 BD 00ZE 8 0057 00
0006 FE 002F BD 0058 69
0007 52 0030 FC 0039 "E,
0008 5E 0031 BC 005A 00
0609 FE (2032 BD 0058 N2
0CGOA 7C 0033 FE 005C BD
GOOB 0 0034 09 005D FE
6eoC 01 G035 97 005E 52
060D Be 0036 00 005F 00
000E (5] 0037 B 0060 00
000F 03 0038 00 0061 15
0010 01 0039 69 0062 9D
0011 16 003A 5F 0063 BD
0012 23 003B 84 0064 00
0013 6 003C Fa 0065 69
0014 CE 003D 27 0U66 7E
0613 U0 003E U7 0067 00
0C16 00 003F s0 0es68 14
0017 F 0040 10 0069 86
0018 bl 0041 B CO5A 02
001¢ B 0042 A 0G6B CE
001A F12 0043) 0068)
001B 93 0044 e 006D 00
001C Bt 0045 Fo 0065 09
001D] 2046 g6 0O6F 26
001E 6 0c47 00 nG70 FD
001F 01 0048 21 0071 1A
0020 46 0049 il 0072 28
0021 25 004 A 1 0073 7
0022 F9 0048 30 0074 o5
0023 BD 04C N 0075 01
0024 FC 004D 26 0076 34
0025 BC 004E 0i) 0077 3F
0028 3D Q04F Bi) 0078 57
0027 D) 00590 1o 007G N
0028 32 0051 52 007 A Qe
0078 (B]V]
007C 34
RESET

*This data may change randoniy.

Binary-to-decimal training program.

Figure 9-1

HEATHKIT
CONTINUING

10.

Programming Experiments 9" 7

Now that you have entered the Binary-to-Decimal training pro-
gram, you must examine the data for errors. Use the following
sequence to examine the data and correct any errors.

A. Press the EXAM (examine) key. Note that the display is now
asking for a 4-digit address (_ _ _ _ Ad.)

B. Enter the beginning address of the program (0000). As soon as
the last address digit is entered, displays V and C show the
contents of that memory location. NOTE: The address is a
memory location in the Trainer.

C. Now compare the displayed address and data with the address
and inst/data columns in the program.

D. Ifthedisplayed dataisincorrect, press the CHAN (change) key.
The data displays will now show prompt characters. Enter the
correct data.

E. Press the FWD (forward) key. The address will increment and
the data for that memory location will be shown. Correct the
data if necessary.

F. Continue to step through the program with the FWD key, and
correct data as necessary, until you reach the end of the pro-
gram. It is not necessary to examine or modify the memory
beyond address 007C since it will have no effect on the pro-
gram.

Press the RESET key.

Press the DO key, then enter address 0002. The display should
show GO. If the display shows a different number or word, or goes
blank, your program contains an error. Repeat steps 6 through 8.

Press the F key. A 6-bit binary number should appear in the display.
This is arandom number and should change in value when you are
told to “GO” next time.

Examine the binary number and determine its decimal value. Then
press the D key. Two prompt characters should appear in the
display.

9-8

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

11. Enter the decimal value of the binary number previously displayed
(most siginficant digit first.) For values less than 10, enter a 0 before
you enter the value. After a short period of time, the Trainer will
indicate whether or not yvour answer is correct.

12. Ifyouranswerivas correct, the Trainer will display YES. A moment
later, the word GO will replace the decimal number.

If your answer was incorrect, the Trainer will display NO. The same
binary number will again be displayed. Determine and enter the
decimal value as described in steps 10 and 11.

13. Refer again to steps 9 through 12 and practice converting binary
numbers to their decimal equivalent. You should obtain 10 correct
answers in succession before you continue with this experiment.

Discussion

Now that you have used the Trainer and its microprocessor, you have
accomplished three objectives. First, you are becoming proficient in
binary-to-decimal conversion. Second, you have been introduced to the
correct method for entering, examining, and modifying a program. Third,
you have been shown how a simple set of instructions can produce a
powerful training aid. However. you should remember, amicroprocesscr
can only perform what you tell it. One incorrect instruction can produce
totally unexpected resuits.

Now, reprogram the Trainer for decimal-to-binary instruction. Since you

will be using the same memory locations used in the first half of this
experiment, the Binary-To-Decimal program will disappear.

Procedure (Continued)
14. Press the RESET key.

Press the AUTO key, and enter address 0000.

WY
w

16. Using the Trainer keys, enter the Decimal-to-Binary training pro-
gram shown in Figure 9-2.

17. Now that you have entered the Decimal-to-Binary program. press
the EXAM key and enter address 0000.

. HEATH
< e dl HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

Continuing
Education

IMPORTANT NOTICE

Dear Customer:

Please replace Page 9-9 of your Heath Continuing Education program — EE-3401 Micro-
processors — with the enclosed page.

We are sorry for any inconvience this may have caused you.

Thank you,

HEATH COMPANY

EE-3401/595-2039
591-2997

m"#g.uc Programming Experiments

ADDRESS INST/DATA ADDRESS INST/DATA ADDRESS INST/DATA
0000 00* 0033 4F 0066 7 00
0001 CE 0034 E6 0067 00
0002 C1 0035 00 0068 80
0003 6F 0036 Cs5 0069 7E
0004 BD 0037 10 006A 00
0005 FE 0038 27 006B 01
0006 50 0039 03 006C BD
0007 5E 003A AB 006D FE
0008 FE 003B 03 006E 52
0009 96 003C 19 006F 15
000A 00 003D 56 0070 1D
000B 8B 003E 24 0071 00
000C 01 003F 03 0072 00
200D 19 0040 AB 0073 00
000E 81 0041 06 0074 80
000F 63 0042 19 0075 BD .
0010 23 0043 08 0076 o0 !
0011 01 0044 8C 0077 7E |
0012 4F 0045 00 0078 BD |
0013 97 0046 83 0079 FC !
0014 00 0047 26 007A BC
0015 B6 0048 EB 0078 7E
0016 CO 0049 BD 007C 00 |
0017 03 004A 00 007D 1C
0018 01 004B 7E 007E 36
0019 46 004C BD 007F BD
001A 25 004D FC 0080 00 $
001B ED 004E BC 0081 8E !
001C 96 004F D6 0082 32
001D 00 0050 a0 0083 01
001E BD 0051 11 0084 39
001F FE 0052 26 0085 00
0020 20 0053 18 0086 00
6021 B6 0054 BD 0087 00
0022 COo 0055 FE 0088 32
0023 06 0056 52 0089 08
0024 01 0057 00 008A 02
0025 46 0058 00 008B 16
0026 25 0059 00 008C 04
0027 Fg 005A 3B 008D 01
0028 BD 005B 4F 008E 86
0029 FC 005C DB 008F 02
002A BC 005D BD 0090 CE
002B Ch 005E 00 0091 00
002C 03 005F 7E 0092 00
002D CE 0060 CE 0093 09
002E 00 0061 C1 0094 26
002F 85 0062 3F 0095 FD
0030 BD 0063 BD 0096 49
0031 FD 0064 FE 0097 26
0032 25 0065 50 0098 F7

0099 39
/ RESET

*This data may change randomly
Figure 9-2

Decimal-to-binary training program.

g-

1

0

UNIT NINE

S—
HEATHMAY
CONTINUIRG
_EDUCATION.

18.

19.

20.

21.

23.

24.

25.

™

Using the FWD key, compare the Trainer memory contents with the
program address and inst/data listing. If you must correct any data,
press the CHAN key and enter the proper data.

After vou have checked the program, press the RESET key.

Press the DO key, then enter address 0001. The display should
show GO. If the display shows a different number or word, or goes
blank, your program contains an error. Repeat steps 17 through 20.

Press the F key. A 2-digit decimal number should appear in the
display, next to the word GO. This is a random number and should
change in value when vou are told to “GO” next time.

Examine the decimal number and determire its binary value. Then
press the D key. Six prompt characters should appear in the dis-

play.

Enter the binary value of the decimal number previously displaved,
beginning with the most significant bit (MSB}. If the decimal value
is less than 32, be sure to enter any leading zeros. NOTE: Although
the program will accept any number combination, you should use
only 1's and 0’s.

If your answer was correct, the Trainer will display YES a short
time after you enter the last binary bit. A moment later, the Trainer
will display GO.

If your answer was incorrect, the Trainer will display NO a short
time after vou enter the last binary bit. A moment later, the same
decimal number will be displayed again. Determine and enter the
binary value as described in steps 22 and 23.

Refer again to steps 21 through 24 and practice converting decimal
numbers to their binary equivalent. You should obtain 16 correct
answers in succession before you continue with this experiment.

Discussion

In this half of the experiment, you were given further experience in
programming with the ET-3200 Microprocessor Trainer. You also im-
proved your ability to readily translate decimal numbers into binary. This
ability will become very useful as you progress through the Microproces-
sor Course.

EDUCATION Programming Experiments
e
ADDRESS INST/DATA ADDRESS INST/DATA ADDRESS INST/DATA

0000 00* 0033 4F 0062 3F
0001 CE 0034 E6 0063 BD
0002 C1 0035 00 0064 FE
0003 6F 0036 Cs 0065 50
0004 BD 0037 10 006A 00
0005 FE 0038 27 006B 01
0006 50 0039 03 006C BD
0007 SE 003A AB 006D FE
0008 FE 003B 03 006E 52
0009 96 003C 19 006F 15
000A 00 003D 56 0070 1D
000B 8B 003E 2 0071 00
000C 01 003F 03 0072 00
000D 19 0040 AB 0073 00
000E 81 0041 06 0074 80
000F 63 0042 19 0075 BD
0010 23 0043 08 0076 00
0011 01 0044 8C 0077 7E
0012 4F 0045 00 0078 BD
0013 97 0046 88 0079 FC
0014 00 0047 26 007A BC
0015 B6 0048 EB 007B 7E
0016 co 0049 BD 007C 00
0017 03 004A 00 007D 1C
0018 01 004B 7E 007E 36
0019 46 004C BD 007F BD
001A 25 004D FC 0080 00
001B ED 004E BC 0081 8E
001C 96 004F Dé 0082 32
001D 00 0050 00 0083 01
001E BD 0051 11 0084 39
001F FE 0052 26 0085 00
0020 20 0053 18 0086 00
0021 B6 0054 BD 0087 00
0022 coO 0055 FE 0088 32
0023 06 0056 52 0089 08
0024 01 0057 00 008A 02
0025 46 0058 00 008B 16
0026 25 0059 00 008C 04
0027 F9 005A 3B 008D 01
0028 BD 005B 4F 008E 86
0029 FC 005C DB 008F 02
002A BC 005D BD 0090 CE
002B C6 0066 00 0091 00
002C 03 0067 00 0092 00
002D CE 0068 80 0093 09
002E 00 0069 7E 0094 26
002F 85 005E 00 0095 FD
0030 BD 005F 7E 0096 49
0031 FD 0060 CE 0097 26
0032 25 0061 C1 0098 F7

0099 39

RESET

*This data may change randomly

Figure 9-2

Decimal-to-binary training program.

9-10

UNIT NINE

HEATHHIT
CONTINUING
EDUCATION

18.

19.

20.

22.

25.

“st”

Using the FWD key, compare the Trainer memory contents with .
program address and inst/data listing. If vou must correct any data,
press the CHAN key and enter the proper data.

After vou have checked the program, press the RESET keyv.

Press the DO key, then enter address 6001. The display should
show GO. If the display shows a different number or word, or goes
blank, vour program contains an error. Repeat steps 17 through 20.

Press the F key. A 2-digit decimal number should appear in the
display, next to the word GO. This is a random number and should
change in value when you are told to "GO™ next time.

Examine the decimal number and determine its binary value. Then
press the D key. Six prompt characters should appear in the dis-

play.

Enterthebinary value of the decimal number previously displaved,
beginning with the most significant bit (MSB). If the decimal value
is less than 32, be sure to enter anv leading zeros. NOTE: Although
the program will accept any number combination, vou should use
only 1's and 0’s.

If your answer was correct, the Trainer will displav YES a short
time after you enter the last binary bit. A moment later, the Trainer
will display GO.

If your answer was incorrect, the Trainer will displav NO a short
time after you enter the last binary bit. A moment later. the same
decimal number will be displaved again. Determine and enter the
binary value as described in steps 22 and 23.

Refer again to steps 21 through 24 and practice converting decimal
numbers to their binary equivalent. You should obtain 10 correct
answers in succession before you coutinue with this experiment.

Discussion

In this half of the experiment, you were given further experience in
programming with the ET-3400 Microprocessor Trainer. You also im-
proved your ability toreadily translate decimal numbers into binarv. This
ability will become very useful as vou progress through the Microproces-
sor Course.

HEATHKIT

Programming Experiments

Experiment 2

HEXADECIMAL/DECIMAL TRAINING PROGRAM

OBJECTIVES:

To practice the conversion of decimal numbers to their
hexadecimal equivalent.

To practice the conversion of hexadecimal numbers to their
decimal equivalent.

Introduction

Binary numbers are used in all microprocessors to represent data and
instructions. But binary numbers are difficult to work with especially
when the number contains 8,,bits or more. To simplify programming,
microprocessor designers usually use other number systems, like octal or
hexadecimal, to represent binary data. Both octal and hexadecimal are
just shorthand notations of binary numbers. Although the numbers are
entered in hexadecimal or octal, the microprocessor “sees” them as
binary. This simplifies programming.

For example, the binary number 10011111, requires eight key closures
for entry. Fortunately, this same number can be represented in
hexadecimal as 9F ,; and requires only two key closures for entry. Fewer
key closures means less programming errors and more efficient prog-
ramming.

Your Microprocessor Trainer is based on the hexadecimal number
system. You probably noticed this when you loaded the programs in the
previous experiment; all instructions were coded in hexadecimal. The
Microprocessor Trainer normally displays data in hexadecimal form. Of
course, special programs allow the Trainer to accept binary or decimal
numbers, as you saw in the first experiment. However, these special
programs waste a portion of the microprocessors potential power and
aren’t necessary because you can make the conversion from decimal to
hexadecimal with a little practice. That’s the purpose of this experiment.
. . to sharpen your conversion skills.

Again, you will use the Microprocessor Trainer for this purpose. First,
you’ll enter a program that allows you to practice conversion from deci-
mal to hexadecimal. Then you’ll load the second program that reverses
the process. You’ll find that it’s not as difficult as it might appear.

9-11

9-12 l UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

————

Now briefly review decimal-to-hexadecimal conversion. Initially. it’s
helpful to make up a chart of decimal numbers and their hexadecimal
equivalents, as shown here.

DECIMAL olxlatalalsielz1s8 {otioli1lizl13]1s 1:
HEXADECIMAL 0 [1(2131315161718 [9[S{B|C|DIE|F]

Recall that hexadecimal is a base 16,, number system. Both systems use
identical numbers from 0 through 9. However, at decimal number 10, the
hexadecimal system shifts to characters of the alphabet, as shown by the
letters A through F. Conversion of a decimal number to it's hexadecimal
equivalent is a simple process where the decimal number is repeatedly
divided by 16,,, with the remainder producing the equivalent hexadeci-
mal number. This example will use onlv 2-digit numbers, since that’s
what you'll be converting in this experiment.

Suppose you want to convert 92,, to hexadecimal. The first step is to
divide 92,, by 16,, as shown below.

-

o]

16) 92

. — 380
Remainder 12,0= Cis < LSD

The quotient is 5, but remember. we aren’'t concerned with this at the
moment. We're interested in the remainder, in this case 12,,, because it
forms the LSD of the equivalent hexadecimal number. Now, refer to the
chart and find that 12,, = C,5s and write this down as the LSD of the hex
equivalent. The next step is to take the quotient of the previous division,
in this case 5,y, and divide it by 16,,, as shown below.

0
16) 5
-0
Remainder — 5.0= 515 « MSD

Of course, the quotient of this division is 0, signifving that the remainder,
5,0, is the MSD of the hexadecimal number. Checking the chart, you find
that 5,5 = 5;6. Combining the MSD (5,5) and LSD (C,), you find that the
hex equivalent of 92,, is 5Cy;. You'll find that, after you've made the
conversion a few times, you’'ll be able to do them in your head. You'll get

that practice in this experiment.

————
HEATHKIT

!W(A.%mloﬂf Programming Experiments 9'1 3
p—— =

Procedure
1. Turn on the Trainer and press the RESET key.

2. Press AUTO and then enter address 0000.
3. Now enter the Decimal-to-Hexadecimal training program, shown

in Figure 9-3, into the Trainer. When you’ve entered the last pro-
gram instruction press the RESET key as shown at the end of the

program.
ADDRESS | INST/DATA § ADDRESS J INST/DATA § ADDRESS]| INST/DATA] ADDRESS]| INST/DATA
0000 o0o* 0024 BD 0048 52 006C 00
0001 CE 0025 FE 0049 00 006D 00
0002 C1 0026 52 004A 3B 006E 00
0003 6F 0027 08 004B 4F 006F 00
0004 BD 0028 08 004C DB 0070 00
0005 FE 0029 00 004D BD 0071 80
0006 50 002A 00 004E 00 0072 39
0007 5E 002B 00 004F 63 0073 86
0008 FE 002C 80 0050 7E 0074 02
0009 96 002D BD 0051 00 0075 CE
000A 00 002E FC 0052 01 0076 00
000B 8B 002F BC 0053 BD 0077 00
000C 01 0030 BD 0054 FE 0078 09
000D 19 0031 FE 0055 52 0079 26
000E 97 0032 09 0056 00 007A FD
000F 00 0033 36 0057 00 007B 4A
0010 B6 0034 4F 0058 15 007C 2
0011 CO 0035 D6 0059 9D 007D F7
0012 03 0036 00 005A BD 007E 39
0013 46 0037 CO 005B 00 RESET
0014 25 0038 10 005C 63
0015 F3 0039 25 005D BD
0016 96 003A 04 005E FC
0017 00 003B 8B 005F BC
0018 BD 003C OA 0060 7E
0019 FE 003D 20 0061 (1]
001A 20 003E F8 0062 16
001B B6 003F CB 0063 36
001C CcO 0040 10 0064 BD
001D 06 0041 1B 0065 00
001E 46 0042 33 0066 73
001F 25 0043 11 0067 32
0020 FA 0044 26 0068 01
0021 BD 0045 OD 0069 BD
0022 FC 0046 BD 006 A FD
0023 BC 0047 FE 006B 8D
* This data may change randomly Figure 9-3

Decimal-to-hexadecimal training program

9-14

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION |

Not”

Check the stored program by first pressing the EXAM key and then
entering address 0000. Now use the FWD key to step through the
program, comparing the contents of memory with the program in
Figure 9-3. Remember, the four left-most digits of the display
represent the mermory address and the two digits at theright are the
contents of memory that should correspond with the INST'DATA
listing of the program. If you find a mistake, correct it by first
pressing the CHAN key and then entering the proper data.

When you’re satisfied that the program is correct, press the RESET
key.

Now it’s time to execute the program. Do this by pressing the DO
key and then entering address 0001. The word “GQO” should now
appear in the two left-most digits. If the display is blank, or if other
numbers or letters appear, there is an error in the program and steps
4 and 5 should be repeated.

Now press the F key. A 2-digit “decimal” number will appear on
the display. The Trainer is asking you to convert this decimal
number to its hexadecimal equivalent. Therefore, examine the dec-
imal number and then convert it to hexadecimal.

Enter your answer by first pressing key D. Two prompt characters
will appear in the left-most digits. Now enter your hexadecimal
number.

If you respond correctly, the Trainer will display “YES™ for a short
period and then give vou another “GO.” Pressing the F key will
cause another random number to be displayed.

Anincorrect response will result in the word “NO” on the display.
After a short delay, the original decimal number will reappear and
you should try the conversion process again. This cycle continues
until you arrive at the correct answer.

Repeat steps 7 and 8, practicing conversion until you're confident
of your ability. A good guideline to follow is.... when you answer
10 consecutive queries correctly, vou're probably proficient.

RN

HEATHKIT

Programming Experiments 9‘1 5

Discussion

As you worked through the exercises in this experiment, you probably
developed your own shorthand method of conversion. After a few
queries, you probably found that you didn’t need the decimal-to-
hexadecimal conversion chart any longer . . . you had the chart commit-
ted to memory. Perhaps you noticed that when 16,4 is divided into the
2-digit decimal numbers used in this experiment, the resulting quotient
always equals the MSD of the hexadecimal equivalent. Naturally, the
remainder is the LSD. However, this only works for decimal numbers less
than 159,,. For larger numbers, the procedure studied earlier must be
used.

Since the Microprocessor Trainer displays data in hexadecimal and we
naturally think in decimal, the conversion process must be reversed to
interpret output data from the Trainer. For example, if the Trainer is
programmed to add the numbers 1A,; and 9B,q, the result B5,; will be
displayed. This hexadecimal number means very little. To understand
the result, you must convert the sum (B5,) to its decimal equivalent
(181,0). Now the answer is clear.

Several methods can be used to change hexadecimal numbers to decimal.
One process uses double conversion; first, the hexadecimal number is
reduced to its binary equivalent; next, the resulting binary number is
transformed into the resulting decimal equivalent.

Another, more commonly used method, is to use positional notation,
inherent in any number system, and multiply each digit by its weighted
value and then add the products. For example, the decimal equivalent of
the hex number 11,4 is derived as shown below:

Assign Weights: 16! 16° Positional Weights
1 1
Weight x Digit: 1 X 16! = 16 <— e 1x16°=1
Add Products: 16 + 1 = 17
Final Result: 116 = 17,

The first step is to assign positioned weights to each digit. Since the
number is hexadecimal, each position represents a power of 16,,. Next,
multiply each digit by its positional weight. Finally, add the products.
The resulting sum is the decimal equivalent. Therefore, as shown in the
example, 11,4 is equal to 17,

9-16

UNIT NINE

HEATHKIT
CONTINUING
_ EDUCATION.

Ty

Now try a problem that's a bit more difficult . . . converting 6B, to
decimal. To begin with, this expression hardly looks like a number.
Instead, it's a combination of a number and a letter. However, the notation
at the bottom of the expression denotes a base 16 number so we know it’s
hexadecimal. The translation process is almost identical to the previous
example. The only difference being that the hexadecimal ““letter” mustbe
changed to decimal before it can be multiplied by the positional weight.
The conversion process is shown below.

Assign Weights: 16! 16°

6 B
Convert to Decimal: 6,4, = 6,, - [B = 114

Weight x Digit: 6 X 16! = G6 11 X 16° = 11
Add Preducts: 96 + 11 = 107
Final Result: 6B = 107,

Again, we begin by assigning positional weights to each digit. However,
now the second step is to convert the hexadecimal characters to decimal
numbers. Recall that 6,5 is equal to 6,y and that B,; equals 11,,. Now
multiply the weight by the decimal numbers, add the products and obtain
the final result. As shown, the decimal equivalent of 6B,4 is 107,,.

In the next section of this experiment, you will load a hexadecimal-to-
decimal training program in the Trainer and then practice hexadecimal-
to-decimal conversion.

Procedure (Continued)

10. Prepare to enter the new program by pressing the RESET key. Next
press the AUTO key and then enter address 0009.

11. Refer to Figure 8-1 and enter the Hexadecimal-to-Decimal training
program listed there. When vou've entered all of the instructions,
press the RESET ksy as indicated at the end of the program.

12. Check the program that you've loaded by pressing the EXAM key
and then entering address 0000. Use the FWD key to step through
the program, comparing the stored program with the program
listing in Figure 9-4. Use the CHAN key to correct any errors that
vou find.

When you are satisfied that the program is correct, press the RESET
key.

Programming Experiments

ADDRESS | INST/DATA | ADDRESS]| INST/DATA | ADDRESS | INST/DATA | ADDRESS] INST/DATA
0000 00 0024 BD 0048 FE 006C 8D
0001 CE 0025 FC 0049 52 006D 00
0002 C1 0026 BC 004A 00 006E 00
0003 6F 0027 BD 004B 3B 006F 00
0004 BD 0028 FE 004C 4F 0070 00
0005 FE 0029 52 004D DB 0071 00
0006 50 002A 08 004E BD 0072 80
0007 5E 002B 08 004F 00 0073 39
0008 FE 002C 00 0050 64 0074 86
0009 96 002D 00 0051 7E 0075 02
000A 00 002E 00 0052 00 0076 CE
000B 4C 002F 80 0053 01 0077 00
000C 81 0030 BD 0054 BD 0078 00
000D 63 0031 FC 0055 FE 0079 09
000E 23 0032 BC 0056 52 007A 26
000F 01 0033 BD 0057 00 007B FD
0010 4F 0034 FE 0058 00 007C 4A
0011 97 0035 09 0059 15 007D 26
0012 00 0036 5F 005A 9D 007E F7
0013 B6 0037 80 005B BD 007F 39
0014 Cco 0038 10 005C 00 RESET
0015 03 0039 25 005D 64
0016 46 003A 04 005E BD
0017 25 003B CB 005F FC
0018 FO 003C 0A 0060 BC
0019 96 003D 20 0061 7E
001A 00 003E F8 0062 00
001B BD 003F 8B 0063 19
001C FE 0040 10 0064 36
001D 20 0041 1B 0065 BD
001E B6 0042 D6 0066 00
001F co 0043 00 0067 7
0020 06 0044 11 0068 32
0021 46 0045 26 0069 01
0022 25 0046 oD 006A BD
0023 FA 0047 BD 006B FD

Figure 9-4

Hexadecimal-to-decimal training program

9-17

9-18

UNIT NINE

HEATHKIT

CONTINUING
'EDUCATION

13.

14.

15.

s

Now execute the program by first pressing the DO key and then
entering address 0001. The word GO’ should appear on the dis-
play. The absence of this word indicates a programming error and
you should goback and recheck the program as outlined in step 12.

Now press the I key. A 2-digit “hexadecimal’ number will appear.
The Trainer is asking for the decimal equivalent of this number.
Convert the hexadecimal number into its decimal equivalent. Then
enter your answer by pressing the D kev. Two prompt characters
will appear. Now enter your answer.

If your response is correct, the Trainer will display “YES.” You can
then continue these conversion exercises by again pressing the F
key.

However, if your answer is incorrect, the Trainer will display
“NO.” After a short delay, the original hexadecimal number will
reappear, and you can try again.

Continue the conversion training program until you are confident
of your ability to change hexadecimal numbers to decimal num-
bers. The standard of ten correct conversions in a row is a good
guideline.

Discussion

The translation of hexadecimai numbers into decimal equivalent num-
bers is an important part of your training.

You will find this skill is extremely handy when vou begin to write
programs later in this course. Now you should be able to convert between
hexadecimal and decimal numbers with ease. Perhaps vou even de-
veloped your own shorthand methods for these translations. If so, use
them. However, a word of caution . . . be sure thev work for all numbers.
As mentioned previously, some techniques work with small numbers,
but not with large numbers.

HEATHKIT

Programming Experiments

Experiment 3
STRAIGHT LINE PROGRAMS

OBJECTIVES:

To demonstrate the instructions presented in Unit 2 with sim-
ple programs.

To present three new instructions and use them in simple
programs.

To demonstrate some programming pitfalls.

To demonstrate the difference between RAM and ROM.

Introduction

Unit 2 introduced you to the basic microprocessor and its internal struc-
ture. You also learned six basic microprocessor instructions that are
represented by 8-bit binary numbers called “op codes.” Op codes allow
you to use the microprocessor for data manipulation. Figure 9-5 lists the
six instructions and their op codes. It also lists three new instructions that
you will use in this experiment. These new instructions use the inherent
addressing mode described in Unit 2.

This is the first experiment to introduce microprocessor instructions that
you can identify. There are a number of Trainer keyboard commands that
you must learn in order to examine and use the microprocessor instruc-
tions. The Trainer commands that you should know for this experiment
are:

DO — Execute the program, beginning at the address specified after this
key is pressed.

EXAM (examine) — Display the address and memory contents at the
address specified after this key is pressed. Memory contents can be
changed by pressing the CHAN key and entering new data.

FWD (forward) — Advance to the next memory location and display the
contents.

CHAN (change) — Open the memory location being examined so that
new data can be entered.

9-19

HEATHKIY

- CONTINUING
9 20 UNIT NINE ~ EDUCATION
NAME MNEMONIC » OPCODE DESCRIPTION
Load Accumulator LDA 1000 0110, Load the contents of the next memory
{Immediate) or location into the accumulator.
8615
Add ADD 1000 1011, Add the contents of the next memorv
(Immediate) or location to the present contents of the
8B4 accumulator. Place the sum in the
accumulator.
Load Accumulator LDA 1001 0110, Load the contents of the memory
(Direct) or location whose address is given by
964 the next byte into the accumulator.
Add ADD 1001 1011, Add the contents of the memory location
(Direct) or whose address is given by the next byte
9B, to the present contents of the accumulator.

Place the sum in the accumulator.

Store Accumulator STA 1001 0111, Store the contents of the accumulator in
{Direct) or the memory location whose address is
97 s given by the next byte.
Halt HLT 0011 1110, Stop all operations.
{Inherent) or
3Ew
Clear Accumulator CLRA 0100 1111, Reset all bits in the accumulator
{Inherent) or to 0.
4F 4
Increment INCA 0100 1100, Add 1 to the contents of
Accumulator or the accumulator.
(Inherent) 1Cy4
Decrement DECA 0100 1010, Subtract 1 from the contents of the
Accumulator or accumulator.
{Inherent) 4,

Figure 9-5

Instructions used in Experiment 3.

HEATHKIT
CONTINUING

Programming Experiments 9' 2 1

BACK — Go back to the previous memory location and display the
contents.

AUTO (automatic) — Open the memory location specified, after this key
is pressed, so that data can be entered. After data has been entered,
automatically advance to the next memory location and wait for data.

SS (single step) — Go to the address specified by the program counter and
execute the instruction at that address. Wait at the next instruction.

ACCA (accumulator) — Display the contents of the accumulator when
this key is pressed. Accumulator contents can be changed by pressing the
CHAN key and entering new data.

PC (program counter) — Display the contents of the program counter.
This points to the next location in memory that the microprocessor will
“fetch” from. Program counter contents can be changed by pressing the
CHAN key and entering the new address.

RESET — Clear any Trainer keyboard commands and display “CPU UP.”
Memory contents and microprocessor contents are not disturbed.

You have access to all of these keyboard commands after the RESET key is
pressed.

In this experiment, you will load some simple straight-line programs into
the Trainer and examine how the microprocessor executes them. In its
normal mode of operation, the microprocessor executes programs much
too fast for a person to follow. It can execute hundreds of thousands of
instructions each second. To allow us to witness the operation of the
MPU, this high speed operation must be slowed down. The Microproces-
sor Trainer has a mode of operation that allows us to control the execution
of single instructions. In this single-step mode, we can look at the con-
tents of the accumulator, the program counter, and various memory
locations, after each instruction is executed. In this way, we can follow
exactly how the computer performs each step of the program. For this
reason, you will use the single-step mode for most of the programs in this
experiment.

Q-22 | unIT NINE

HEATHKIT
CONTINUING
_EDUCATION

N

Procedure

1. Switch your Trainer on, and press the RESET kev.

2. Your first program will use the immediate addressing mode to add
two numbers. Press AUTO and enter starting address 0000. Then
load the hex contents of the program listed in Figure 9-5.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS | CONTENTS
0000 86 LDA Load accumulator immediately with
0001 21 33 Operand 1.
0002 8B ADD Add to accumulator immediately with
0003 17 23, Operand 2.
0004 3E HLT Stop.
Figure 9-6
Addition of two numbers through the immediate addressing mode.

3. Press the RESET key, then examine your program to make sure it
was properly entered. Always examine your program after it is
entered.

4, Press the ACCA key and record the value _ _. This is a random
number since no data has been loaded.

5. Press the PC key, then change the contents of the program counter
to 0000 (the starting address of your program).

6. Press the SS key. This lets the Trainer execute the first instruction.
The display should show 00028b. 0002 represents the address of
the next instruction; 8b is the next instruction.

7. Press the ACCA key and record the value _ _. The firs! program
instruction was LDA, and the next byte contzined the data
(operand) to be loaded, which is 21, This should be the value you
recorded in this step.

8. Press the PCkey and record the value_ _ __. Thisvalue pointstothe

next memory location, which should be €002.

10.

11.

12.

Programming Experiments

You may have noted that the address 0002 and instruction 8b were
displayed when you first pressed the SS key. This would seem to
indicate that 8b was already fetched and the program counter
should point to address 0003. However, the control program allows
the Trainer to “look” at the next instruction.

Press the SS key and record the value - _ _ _ _ _. The second
instruction has been executed and the display should show the
next instruction and its address.

Press the ACCA key and record the value _ _. The second operand
has been added to the first operand and the sum is stored in the
accumulator.

Press the SS key. Note that the display does not change. This is
because the next instruction was a halt instruction (3E,s). The
Trainer is preprogrammed to stop at a halt instruction. It also loses
control of the single-step function when the halt instruction is
implemented.

Enter the program (HEX contents) listed in Figure 9-7. Then
examine the program to make sure it is properly entered.

13.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS CONTENTS
0000 96 LDA Load accumulator direct with
0001 07 07 operand 1 which is stored at this address.
0002 9B ADD Add to accumulator direct with operand 2
0003 08 08, which is stored at this address.
0004 97 STA Store the sum
0005 09 09 at this address.
0006 3E HLT Stop.
0007 20 32, Operand 1.
0008 17 23,0 Operand 2.
0009 00 Q0 Reserved for sum.
Figure 9-7

Addition of two numbers through the direct addressing mode.

Press the ACCA key and record the value _ _. This is the value
obtained in the previous program, a value you entered prior to this
program, or a random value produced when you plugged in the
Trainer.

9-23

9-24 | uNniT NINE

HEATHKIT

CONTINUING
_EDUCATION

14.

15.

16.

17.

18.

19.

“Nt”

Enter the program starting address into the program counter and
single-step through the program. Record the specified information
after each step.

Step 1 display _ _ . _ _ _.
ACCA _ _.
Step 2 display . _ _ _ _ _.
ACCA _ _.
Step 3 display — . .. _ _ _.

ACCA_ _.
Examine address 0009. Its valueis _ _. This value should be identi-
cal to the value now stored in the ACCA.

Now compare your recorded data with the program in Figure 9-7.
This will give you a general picture of how the microprocessor uses
various instructions and data to perform a desired function.

Change the data in the ACCA and at address 0009 to FF, then
execute the program with the DO key. This is done by depressing
the DO key and then entering the address of the first instruction
(0000). This allows the MPU to execute the program at its normal
speed. After the program runs, vou must press RESET to return
control to the keyboard.

The data in the ACCA is _ _ and the data in address 0009 is _ _.
These should be the same and equal to the sum of the two operands.

The program counter contains the address _ _ _ _. This should be
the address of the next memory location after the HLT instruction.

CONTINUING Programming Experi -
og ing Experiments | 9-25
=)
20. Now write a program of your own. Using the direct addressing
mode, write a program that will multiply 4 times 4, by adding 4 to
itself in three consecutive steps. The final answer should be held in
the accumulator. After you write your program, enter it into the
Trainer and execute it. Keep trying until it produces a final result of
10,4 (which is 16,,) in the accumulator.
One solution to the problem is shown in Figure 9-8. Yours should
be similar, although not necessarily identical.
HEX HEX MNEMONICS/DECIMAL COMMENTS
ADDRESS | CONTENTS CONTENTS
0000 96 LDA Load accumulator direct with
0001 09 09 operand 1 which is stored at this address.
0002 98 ADD Add to accumulator direct with
0003 09 ’ 09,q operand 1 which is stored at this address.
0004 9B ADD Add to accumulator direct with
0005 09 09,4 operand 1 which is stored at this address.
0006 9B ADD Add to accumulator direct with
0007 09 094 operand 1 which is stored at this address.
0008 3E HLT Stop.
0009 04 04,, Operand 1.
Figure 9-8
Multiplication of a number by another through multiple addition in the direct addressing
mode.
21. Load the program shown in Figure 9-8 into the Trainer. Enter the

program starting address into the program counter and single-step
through the program. Record the specified information after each

step.
Step 1 display _ _ _ _ _ _. ACCA _ _.
Step 2 display - — - _ _ _. ACCA _ _.
Step 3 display — _ . _ _ _. ACCA _ _.

Step 4 display - _ - _ _ _. ACCA _ .

HEATHKIT
9-26 [ONIT NINE S

S

22. According to the microprocessar, the product of 4, times 4
Is _ 6

23. Now that you are becoming acquainted with the instructions de-
scribed in Unit 2, examine the three instructions introduced in this
Experiment. Enter the program listed in Figure 9-9.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS {CONTENTS CONTENTS

0000 4F CLRA Clear accumulator.

0001 97 STA Store the contents

0002 OA OA« at this address.

0003 4C INCA Increment accumulator.

0004 g7 STA Store the contenis

0005 oB CB. at this address.

0006 4A DECA Decrement accumulator.

0007 97 STA Store the contents

0008 oC OCy at this address.

0009 3E HLT Stop.

000A FF FF.. Reserved for data.

ocoB FF FF. Reserved for data.

000C FF FF.. Reserved for data.

Implementation of the Clear, Increment, and Decrement instructions.

24. Set the program counter to 0000 and single-step through the prog-
ram. Record the specified information after each step.

Step 1 display — _ _ _ _ _. ACCA _ _.
Step 2 display _ _ _ _ _ _. ACCA _ _.
Step 3 display _ _ _ _ _ _. ACCA _ _.
Step 4 display _ _ _ _ _ _. ACCA _ ..
Step 5 display - _ _ _ _ _. ACCA _ _.

Step 6 display _ _ _ _ _ _.

———
HEATHKIT
comvlrl:gﬁ: Programming Experiments 9‘27

— 25. Compare your accumulated data with the program in Figure 9-9.
Note that when op codes 4F, 4Cy, and 4A 4 are executed, the
single-step display advances only one address location. This is

— because of their inherent addressing mode; immediate and direct
addressing modes require two locations in memory.

— 26. Shown below is a program to swap the contents of two memory
locations. Now examine the process using the Trainer. Enter the
program listed in Figure 9-10.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS CONTENTS
0000 96 LDA Load accumulator direct with operand 1
0001 10 10 stored at this address.
- 0002 97 STA Store operand 1
0003 12 12,4 at this address.
0004 96 LDA Load accumulator direct with operand 2
- 0005 11 146 stored at this address.
0006 97 STA Store operand 2
0007 10 10,5 at this address.
- 0008 96 LDA Load accumulator direct with operand 1
0009 12 12, stored at this address.
000A 97 STA Store operand 1
- 000B 11 11 at this address.
0o0oC 4F CLRA Clear the accumulator.
000D 97 STA Store the contents
o 000E 12 12, at this address.
000F 3E HLT Stop.
0010 AA 1700 Operand 1.
- 0011 BB 187, Operand 2.
0012 00 00 Temporary storage.

Data transfer between two addresses.

HEATHIIT
9-28 - CONTINUING
_EDUCATION

s

27. Set the program counter to starting address 0000 and single-step
through the program. Record the specified information after each

step.
Step 1 display _ _ _ _ _ _. ACCA _ _. N
Step 2 display _ _ _ _ _ _. ACCA _ _. h
Step 3 display _ _ _ _ _ _. ACCA _ _.
Step 4 display - _ _ _ _ _. ACCA _ _. -
Step 5 display _ _ _ _ _ _. ACCA _ _. —
Step 6 display - _ _ _ _ _. ACCA _ _.
Step 7 display — _ _ _ _ _. ACCA _ .
Step 8 display - _ _ _ _ _. ACCA _ _. -

28. Examine address:
0010 __ _.
0011 _ _.
0012 _ _.

29. Compare your accumulated data with the program in Figure 9-10. —

Programming Experiments 9‘29

30. Now you will examine some common programming pitfalls. With-
out modifying the previous program, except as directed in Figure
9-11, enter the program listed in Figure 9-11.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS CONTENTS
0000 86 LDA Load accumulator immediately with
0001 4F 79, operand 1.
0002 97 STA Store operand 1
0003 05 05, at this address.
0004 4A DECA Decrement accumulator
0005 3E HLT Stop.
Figure 9-11

Storing data at an address in the program.

31. Set the program counter to 0000 and single-step through the pro-
gram. Record the specified information after each step.

Step 1 display - - - _ _ _.

Step 2 display — - _ _ _ _.

Step 3 display - - _ _ _ _.

Step 4 display - - — _ _ _.

Step 5 display - — _ _ _ _.

Step 6 display - _ _ _ _ _.

Step 7 display _ — — _ _ _.

Step 8 display — . _ _ _ _.

Step 9 display - — _ _ _ _.

ACCA _ _.
ACCA _ _.
ACCA _ _.
ACCA _ _.
ACCA _ _.
ACCA _ _.
ACCA _ _.
ACCA _ _.

ACCA __.

9-30

UNIT NINE

HEATHKIT

CONTINUING
EDUCATION _

32.

33.

34.

="

Compare your accumulated data with the program in Figure 9-11.
Note that the data in the accumulator (operand 1) has been stored at
address 0005. This removed the HLT instruction and allowed the
microprocessor to continue executing any valid instructions in
memory. In this case, the remaining unaltered instructions from
the previous program are used. When you write a program, make
sure you do not store data at an address that contains a needed
instruction or data.

Using the data vou accumulated in step 31 of this experiment, plus
the programs listed in Figures 9-10 and 9-11, determine the con-
tents of address:

0010 _ _.

0011 _ _.

0012 _ _.
Now examine the Trainer contents at address:

0010 _ _.

0011 _ _.

0012 _ _.
Your estimated data from step 33, and the actual contents should be
identical. If theyv are not, re-examine vour calculations and the
contents of each memory location from 0000 to 0012. You might

have inadvertentlv modified the contents of an address in the
previous steps.

Programming Experiments

35. Without modifying the previous program, except as directed in
Figure 9-12, enter the program listed in Figure 9-12.

B HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS CONTENTS
0000 86 LDA Load accumulator immediately with
0001 40 64,, operand 1.
_ 0002 8B ADD Add to accumulator immediately with
0003 0A 1010 operand 2.
0004 97 STA Store the sum
. 0005 07 07« at this address.
0006 4F CLRA Clear accumulator.
0007 00 00 Reserved for data.
Figure 9-12

— Addition of two numbers with immediate addressing.

36. Set the program counter to 0000 and single-step through the prog-
— ram. Record the specified information after each step.

Step 1 display - _ _ _ _ _. ACCA _ _.
- Step 2 display - — _ _ _ _. ACCA _ _.
- Step 3 display _ _ . _ _ _. ACCA _ _.
Step 4 display - _ _ _ _ _. ACCA _ _.
- Step 5 display - _ _ _ _ _. ACCA _ _.
- Step 6 display _ _ _ _ _ _. ACCA _ _.
Step 7 display — — _— _ _ _. ACCA _ _.
Step 8 display — — _ _ _ _. ACCA _ _.
- Step 9 display _ _ _ _ _ _. ACCA _ _.

9-31

9-32

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

N~

37. Compare your accumulated data with the program in Figure 9-12.
Note that the Trainer executed the instructions bevond address
0007. This occured because there was no halt instruction in the
program. Always end your program with a halt instruction. If you
don’t, the microprocessor will try to execute all of the information
contained in memory, thinking it is part of the program. In the
process, the program you entered may get modified.

38. This final programming pitfall illustrates a problem almost every-
body experiences. Enter the program listed in Figure 9-13.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS | CONTENTS CCNTENTS

0000 96 LDA Load accumulator direct with

0001 07 07 operand 1 stored at this address.

0002 8B ADD Add to accumulator direct with

0003 07 07 s operand 1 stored at this address.

0004 88 ADD Add to accumulator direct with

0005 07 074 operand 1 stored at this address.

0006 3E HLT Stop.

0007 05 05, Operand 1.

Figure 9-13

Multiplication of two numbers using successive addition in the direct addressing mode.

39. Setthe program counter to 0000 and single-step through the prog-
ram. Record the specified information after each step.

Step 1 display

Step 2 display _ _ . _ _ _.

Step 3 display _ _ _ _ _ _.

ACCA _ _.

ACCA _ _.

ACCA - _.

HEATHKIT
CONTINUING

Programming Experiments J 9'33
— E_——— ’

40. Compare your accumulated data with the program in Figure 9-13.
The program should have added 05 three times (5 X 3) for the
answer OF. The Trainer indicates the answer is 13. This discre-
pancy occurred because the program contains the wrong address-
ing mode op code for the ADD function. It should be 9B rather than
8B. Return to Figure 9-13 and change the two ADD op codes to 9B

_ so the program will be correct.

41. In Unit 2, you were shown that RAM (random access memory) was
— a read/write type memory, while ROM (read only memory) is a
preprogrammed memory that can only be read and not written into.
To examine these memory types, enter FF at address 0000 through
— 00OQF.

42. Examine the following memory locations and write down the con-
_ tents next to each address. Use the first data column for each
address. You will use the second column later.

— ADDRESS DATA DATA ADDRESS DATA DATA
0000 - - FDOO - -
— 0001 —— - FDO1 - -
0002 —- - FDo2 S -
0003 - - FDO3 - -
— 0004 - - FDO4 - -
0005 . S FDOS - S
0006 - - FDO6 - -
-~ 0007 - - FDO7 - -
0008 - - FDo8 - -
0009 - - FDO9 - —=
- 000A - - FDOA - -
oooB - - FDOB - ——
000C - - FDOC - -
- 000D - - FDOD - -
000E - - FDOE - -
000F - - FDOF - -

43. Turn the Trainer power off, then unplug the line cord. Wait twenty
- seconds, then plug in the line cord and turn on the Trainer.

9-34 [UNIT NINE

HEATHKIT

CONTINUING
EDUCATION

44,

St

Examine the memory locations listed in step 42, and write down
the contents next to each address, in the second data column.
Compare the two sets of data. Notice the data obtained at address
0000 through 00CF changed when all Trainer power was removed.

However, the data at address FD0O through FDOF is unchanged.

Address 0000 is RAM, while address FD0O is ROM. Memory is lost
from RAM when power is removed. When power is reapplied,
random data will appear in the memory.

Enter FF at address FD0O through FDOF. Now examine address
FDOO through FDOF. Notice the data is identical to that obtained in
step42. This shows that ROM can not be written into. You can send
data down the data bus. but the memory will not accept it.

SUGGESTION: Use the nine instructions presented and write a few
sample programs of your own. It’s quite simple and can be great fun.

Programming Experiments

Experiment 4

ARITHMETIC AND LOGIC INSTRUCTIONS

- OBJECTIVES:

To present seven new instructions and use them in simple

— programs.

To demonstrate 2’s complement conversion.

To demonstrate binary subtraction.

- To demonstrate binary addition of signed numbers.

To demonstrate logical manipulation of data using the AND

- and OR instructions.

Introduction

In Experiment 3, you used nine instructions to write various programs.

These instructions were:

MNEMONIC

- LDA
LDA
ADD
o ADD
STA
CLRA
INCA
DECA
HLT

OP CODE

86
961«
8B
9Bs
97
4F s
4C;4
4A;s
3E

'ADDRESSING MODE

Immediate
Direct
Immediate
Direct
Direct
Inherent
Inherent
Inherent
Inherent

9-35

9-36

HEATHKIT

CONTINUIMNG
UNIT NINE EDUCATION
LTTE Tfi_—_\'f'.ff:? e
Seven new instructions are presented in this experiment. Each is listed in
Figure 9-14.
Unit 3 examined the process of binary arithmetic, 2’s complement arith-
metic, signed number addition, and Boolean logic. Through sample
programs, this experiment will illustrate some of the operations pre-
sented in Unit 3.
NAME MNEMONIC OPCODE DESCRIPTION
Complement 2’s NEGA 0100 0000, Replace the contents of the accumulator
or Negate or with its complement plus 1.
(Inherent) 40,4
Subtract SUB 1000 0000, Subtract the contents of the next
{(Immediate) or memory location from the contents
804 of the accumulator. Place the
difference in the accumulator.
Subtract SUB 1001 0000, Subtract the contents of the memory
(Direct) or location whose address is given
90,4 by the next byte from the present
contents of the accumulator. Place
the difference in the accumulator.
AND ANDA 1000 0100, Perform the logical AND between
{Immediate) or the contents of the accumulator
84, and the contents of the next memory
location. Place the result in the accumulator.
AND ANDA 1001 0100, Perform the logical AND between
(Direct) or the contents of the accumulator and
94 4 the contents of the memory location whose

address is given by the next
byte. Place the result in the accumulator.

OR, Inclusive
(Immediate)

ORA 1000 1010, Perform the logical OR between the
or contents of the accumulator and
8A ;4 the contents of the next memory location.

Place the result in the accumulator.

OR, Inclusive
(Direct)

ORA 1001 1010, Perform the logical OR between the
or contents of the accumulator and the
9A 4 contents of the memory location whose

address is given by the next byte.
Place the result in the accumulator.

Figure 9-14

Instructions intrcduced in this experiment.

HEATHKIT
CONTINUING

EDUCATION
—_———

Programming Experiments

Procedure

1.

In the first part of the experiment, you will determine how the
microprocessor represents negative and positive numbers. The
program shown in Figure 9-15 loads a positive number into the
accumulator and then repeatedly decrements the number until it is
negative. Enter this program into the Trainer. Verify that you en-
tered it properly by examining each address.

Go to the single-step mode by: pressing the PC key; pressing the
CHAN key; and entering the starting address (0000). Single-step
through the program by repeatedly pressing the SS key. Notice that
the first instruction places + 5,0 in the accumulator. Refer to Figure
9-16 and record the contents of the accumulator (in both hexadeci-
mal and binary) after each DECA instruction is executed.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 86 LDA Load accumulator immediate

0001 05 05 with 05.

0002 4A DECA

0003 4A DECA Repeatedly decrement

0004 4A DECA the accumulator.

0005 4A DECA

0006 4A DECA

0007 4A DECA

0008 4A DECA

0009 4A DECA

000A 4A DECA

000B 4A DECA

000C 4A DECA

000D 4A DECA

000E 4A DECA

000F 3E HLT Halt

Figure 9-15

This program decrements the contents of the accumulator from +5 to —8.

9-37

9-38 [UNIT NINE

HEATHKIT

CONTINUING
EDUCA_TION
CONTENTS OF ACCUMULATOR
AFTER
STEP DECIMAL HEXADECIMAL BINARY
1 +5 05 0000 0101
2 +4
3 +3
4 -2
5 1
6 0
7 -1
8 -2
9 -3
10 —4
11 -3 FB 1111 1011
Figure 9-16
Record results here.
3. In step 7, the number in the accumulator changed from 0 to —1. The
microprocessor expresses —1as_ _,40r . ____ .. The table you

have developed in Figure 9-16 shows how the microprocessor
expresses the signed number from +5 to —5 in both hexadecimal
and binary. The next program will add signed numbers like these.

4. Enter the program shown in Figure 9-17. Use the single step mode
to execute the program. What number is in the accumulator after
the first instruction is executed? _ _jqor_ _ . _ .. What signed
decimal number does this represent?

5. What number is in the accumulator after the second instruction is
executed? _ _g0or _ _ _ _ _ _ _ _ .. What decimal number does this
represent? _

6. What number is in the accumulator after the third instruction is
executed? _ _jyor_ . __ __ _ _ ». What signed decimal number does

this represent? _____ .

Discussion

These very simple examples illustrate how the microprocessor repre-
sents signed numbers. Further experiments will show that the micro-
processor can represent signed numbers between +127,, and —128,,.
You could determine the bit pattern for each negative number by clearing

the accumulator and decrementing the required number of times. How- _

ever, there are much simpler ways of determining the proper bit pattern
for negative numbers.

Programming Experiments

TION
_]
- HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
_ 0000 86 LDA Load accumulator immediate
0001 05 +5 with +5.
0002 8B ADD Add immediate
0003 FB -5 -5.
_ 0004 8B ADD Add immediate
0005 FC -4 -4
0006 3E HLT
Figure 9-17

Adding signed numbers.

The simplest way is to start with the positive binary equivalent and take
the two’s complement by changing all 0’s to 1’s and 1’s to 0’s and adding
1. The microprocessor has an instruction that will do this for us. It is
called the two’s complement or Negate instruction. Its mnemonic is
NEGA. This instruction changes the number in the accumulator to its
two’s complement. It is used to change the sign of a number.

Procedure (Continued)

7. Load the program shown in Figure 9-18. Use the single-step mode
to execute the program. Execute the first instruction by depressing
the SS key. What number is in the accumulator? _ _,gor____ __ .
What signed decimal number does this represent?

- 8. Execute the second instruction. What number is in the ac-
cumulator? _ _jgor________ .- What signed decimal number does
this represent? _______. Compare this with the number in step 7.

What affect did the NEGA instruction have?

HEX HEX MNEMONICS/ COMMENTS
— ADDRESS CONTENTS CONTENTS
0000 86 LDA Load accumulator immediate
0001 05 +5 with +5.
— 0002 40 NEGA Change the number to —5.
0003 40 NEGA Change it back to +5.
0004 4A DECA Decrement the number to +4.
0005 40 NEGA Change the number to —4.
- 0006 40 NEGA Change it back to +4.
0007 3E HLT Halt
Figure 9-18

Using the NEGA instruction.

9-39

9-40

HEATHKIT

CONTIRUING
UNIT NINE _EDUCATION |
=T f;g:l Bt
9. Execute the third instruction. What number is in the accumulator?
e OF _ _ _ _ _ __ _ .. What signed decimal number does this
represent? . Isyouranswer the same as that found in step

77

10. Execute thefourthinstruction. This decrements the accumulator so
that it now contains the signed decimal number

11. Execute the fifth instruction. What number is in the accumulator?
e OF o _ o _ .. What signed decimal number does this
represent? ___ |

12. Execute the sixth instruction. The number in the accumulator is
_ —1s ONICE more.

Discussion

The program used the NEGA instruction four times. The first time, the
NEGA instruction changed 05 to its two's complement FB . Referring
back to the table you developed in Figure 8-16, this is the representation
for —5,,. Thus, the NEGA instruction effectively changes the sign of the
number in the accumulator. The next step proved this again by convert-
ing —5,, back to +5,,. To further emphasize the point, the number was
decremented to +4,,. The next NEGA instruction changed this to FCys
which istherepresentation for —4,,. The final NEGA instruction converts
this back to +4,,. This instruction allows us to convert a positive number
to its negative equivalent and vice versa.

In Unit 3, you learned that the MPU can work with signed numbers in the
range of +127,,to —128,, or unsigned numbers in the range of 0 to 255,
This capability results from the way we interpret bit patterns. The follow-
ing steps will demonstrate this.

Procedure (Continued)

13. Figure 9-19 shows a program for adding the unsigned numbers
220, and 27,. Load this program into the Trainer and execute it.
The final result in the accumulatoris _ _jzor__ _ __ __ _ .. What
unsigned decimal number does this represent?

HEATHKIT N 041
CONTINUA rogrammin i -
EDUCATION ogramming Experiments

HEX HEX MNEMONICS/ COMMENTS

ADDRESS CONTENTS CONTENTS

0000 86 LDA Load accumulator immediate

0001 DC 220, with 220,,.

0002 8B ADD Add immediate

0003 1B 2710 27 0.

0004 3E HLT Halt.

Figure 9-19

14.

15.

D

Adding unsigned numbers.

Figure 9-20 shows a program for adding the signed numbers —36,,

and 27,,. Load and execute this program. The final result in the

accumulatoris _ _gor _ _ _ _____ 2. What signed decimal number

does this represent?

Compare the results obtained in steps 13 and 14. Compare the HEX

Contents columns of Figure 9-19 with that of Figure 9-20.
iscussion

This demonstrates that the MPU simply adds bit patterns. It is our in-
terpretation of these patterns that decide whether we are using signed or
unsigned numbers. After all, the two programs are identical except for
our interpretation of the input and output data.

Negative numbers are often encountered when performing subtract oper-
ations. The subtract instruction was shown earlier in Figure 9-14. Either
immediate or direct addressing can be used.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 86 LDA Load accumulator immediate

0001 DC —3640 with —-36,,

0002 8B ADD Add immediate

0003 1B +2740 +2740

0004 3E HLT Halt.

Figure 9-20

Adding signed numbers.

9-42

UNIT NINE

HEATHKIT

CONTINUING
_EDUCATION

™

Procedure {Continued)

16. Loadthe program shown in Figure 9-21. Execute the program using
the single-step mode. What is the number in the accumulator after
the first subtract instruction is executed? _ _;or — _ . _ _ _ _ _)
or _ _jp.

17. What is the number in the accumulator after the second subtract
instruction is executed? _ _sor_ __ _ _ ___ .. What signed decimal
number does this represent?

Discussion

The first subtract instruction subtracted 16,, from 47, leaving 31,,. The
second one subtracted 35,, from 31,, This produced a result of —4,,.
However, the MPU expressed —4 in two’s complement form (FC,s0r 1111
1100,). You will find this to be the case anytime the MPU produces a
negative result.

Now let's look at some of the logical instructions available to the micro-
processor. The AND and OR instructions are described in Figure 9-14.
Carefully read the description of these instructions given there. While
these instructions have manyv uses, we will demonstrate only one here.
Earlier you learned that certain peripheral devices communicate with
computers using the ASCII code. Thus, when the “2’" key on a teletype-
writer is pushed. the computer receives the ASCII code for 2, which is
0011 0010. The ASCII code for 6 is 0011 0110. Notice that the four least
significant bits of the ASCII character are the binary value of the corres-
ponding numeral. Thus, we can convert the ASCII characters for the
numerals 0 through 9 tobinary simply by setting the four most significant
bits to 0’s. Likewise, we can convert the binary numbers 0000 0000
through 0000 1001 to ASCII by changing the four most significant bits to
0011.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 86 LDA Load accumulator immediate

0001 2F 471 with 47,,.

0002 80 SUB Subtract immediate

0003 10 16,, 16,

0004 80 SUB Subtract immediate

0003 23 33,4 35

00Ck 3E HLT Halt

Iigure 9-21

Using the subtract instruction.

Programming Experiments 9-43

Procedure (Continued)

18. Load the program shown in Figure 9-22. Single-step through the
first instruction. The number in the accumulatoris _ _ _ _ _ _ __ 2.

19. Execute the second instruction. This AND’s the contents of the
accumulator with the “mask” _ _ _ _ _ _ _ _. The number in the
accumulator after this AND operationis _ _ _ _____ ». Compare this
with the number that was in the accumulator in step 18. Compare
both numbers with the mask. A 1 in the original number is retained
only if thereisa________ in the corresponding bit position of the
mask.

20. Execute the third instruction. In what memory location is the
number in the accumulator stored? ;. What number is
now in theaccumulator? _ _______ ». Does the number still appear
in the accumulator after being stored in memory?

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 96 LDA Load the accumulator with

0001 OB OB the ASCII character at this address.

0002 84 AND AND it with

0003 OF OF this “mask”.

0004 97 STA Store the binary equivalent

0005 oC ocC at this address.

0006 8A ORA OR the number with

0007 30 30 this “mask”.

0008 97 STA Store the result

0009 oD oD here.

000A 3E HLT Stop

000B 37 0011 0111 ASCII character for numeral 7.

000C — — Reserved

000D —_ —_ Reserved

Figure 9-22

Using the AND and OR instruction.

9-44

UNIT NINE

HEATHKIT
CONTINUING
EDUCATION _

== e

21.

22.

23.

Execute the fourth instruction. This OR’s the contents of the ac-
cumulator with the “mask” _ _ _ _ _ _ _ _ ,. The number in the
accumulatoris _ _ . __ _ .. Compare this with the mask and the
number that was in the accumulator in step 20. A 1 is produced in
the result whenever there is a in the corresponding bit
position of either the original number, the mask, or both.

Execute the fifth instruction. This stores the number in memory
location .

Examine memory locations 000B, 000C;, and 000D, and com-
pare their contents.

Discussion

The program first converts the ASCII code for the number “7” to the
binary number 0000 0111. It does this by ANDing the ASCII code with the
“mask’’ 0000 1111,. Notice that a 1 bit in the mask allows the correspond-
ing bit in the original number to be retained. The four most significant
bits of the original number are ‘“‘masked off”’ because they are ANDed
with 0’s.

The OR operation restores the ASCII character by attaching 0011 as the
four most significant bits.

HEATHKIT
CONTINUING
EDUCATION

Programming Experiments

Experiment 5

PROGRAM BRANCHES
OBJECTIVES:

To manipulate the N, Z, V, and C condition code registers and
determine the conditions that set and reset these flags.

To verify the operation of a simple multiply by repeated addi-
tion program that uses the BEQ conditional branch instruction
and the BRA instruction.

To demonstrate the ability to write a program that divides by
repeated subtraction and uses a conditional branch and BRA
instruction.

To introduce a shorthand method of calculating relative ad-
dresses.

To verify the operation of a program that converts BCD num-
bers to their binary equivalent.

To demonstrate the effect an incorrect relative address can
have on a program operation and how the microprocessor
trainer can be used to debug programs.

Introduction

As mentioned previously, conditional branch instructions give the com-
puter the power to make decisions. As the name implies, a certain condi-
tion must be met before a branch takes place. The condition code registers
monitor the accumulator and signal the presence of a specific condition.
If the MPU encounters a conditional branch instruction, it merely checks
the condition code registers, or flags, to see if the condition is satisfied. If
the specific flag is set, the program branches off to another section. If not,
the normal program continues.

Therefore, the conditional branch instructions inherit their power from
these simple condition code registers. A sound knowledge of how these
flags are set and cleared will enhance your ability as a programmer.

9-45

9-46

UNIT NINE

HEATHKIT
CONTINUING
EDUCATION

\S

Figure 9-23

Displaving the conditions of the flags.

Since condition code registers are very important, your Trainer was
designed with a special key to allow you to examine these flags. The key
islabelled *CC" for “Condition Code.” When this key is pressed. the state
of the condition cede registers will be displayed. Each LED displays the
contents of one register. The letter just to the right of each LED denotes
the correspending register as shown in Figure 9-23.

Notice that there are six flag registers. For the moment we aren't con-
cerned with the two left-most flags. They will be covered in a later unit.
However, we are interested in the N, Z, V, and C flags, because they
indicate conditions that can lead to conditional branches. Notice that the
flags can either be set as indicated by a 1 or they can be cleared as
indicated by a 0.

In this first portion of the experiment, vou will implement a *‘do-
nothing” program that manipulates the condition code registers. Then
single-stepping through the program, vou will examine how the ac-
cumulator changes these flags.

Preocedure

1. Turn on the Trainer and then press the RESET kev.

2. Now, load the program listed in Figure 9-2+4 into the Trainer. Once
the program is loaded, go back and examine it to insure that it's
entered correctly.

Now look at the first instruction of the program in Figure 8-24. It
has the op cede 01 and the mnemonic is “NOP.”” As the comments
column points out, thisis a ‘““do-nothing” type of instruction called
a “No-Op.”" In other words, it performs no operation. In this pro-
gram, the NOP’s primary function is to allow vou to see the first
instruction before it's executed.

Programming Experiments

CONTINUI
EDUCATION
T ——
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 01 NOP “DO Nothing” Instruction
0001 86 LDA Load the accumulator immediate
0002 FF FF 4 with FF .
0003 86 LDA Load the accumulator immediate
0004 77 77 6 with 77,
0005 86 LDA Load the accumulator immediate
0006 00 00,4 with 00,.
0007 86 LDA Load the accumulator immediate
0008 01 01,6 with 014
0009 86 LDA Load the accumulator immediate
000A 92 92, with 92,4
000B 8B ADD Add Immediate
000C C6 C6ys C6,
000D 86 LDA Load the accumulator immediate
000E 08 08,6 with 08,
000F 8B ADD Add Immediate
0010 08 08,4 08,.
0011 86 LDA Load the accumulator immediate
0012 01 01,4 with 01,,.
0013 80 SUB Subtract immediate
0014 02 02,6 02,5
0015 86 LDA Load the accumulator immediate
0016 77 77 with 77 ...
0017 80 SUB Subtract immediate
0018 66 664 66 6.
0019 86 LDA Load the accumulator immediate
001A 49 49, with 49,,.
001B 8B ADD Add immediate
001C 60 60,6 60,5.
001D 86 LDA Load the accumulator immediate
001E 10 1044 with 10,6.
001F 3E HLT Halt.
Figure 9-24

Program to illustrate the condition code registers.

In previous experiments, you probably noticed that when you
single-stepped through programs, you never saw the first instruc-
tion. This is because in the “SS” mode, the Trainer executes the
first instruction automatically and then stops on the second in-
struction. This can be somewhat confusing.

To offset this problem, we merely insert the NOP. The Trainer
“sees” this as the first instruction, although nothing is ac-
complished by the NOP. Therefore, the Trainer displays the next
instruction, which is the first “real” instruction of the program,
permitting you to view it before it’s executed.

9-47

9-48 lUNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

Load the program counter with address 0000 and then press the SS
key. Recall that the first four displays represent the address that’s
currently in the program counter. The two right-most displays
show the op code stored at this address. Record the information
below.

PC____0OP CODE _ _

Now, press the ACCA key and record the contents of the ac-
cumulator.

ACCA _ _

The contents of theaccumulator will bearandom number, since we
haven’t yet executed a program instruction.

Now, press the CC key and record the contents of the N, Z, V, and C
condition code registers below.

NzZzVC
Again, the states of the flags are random at this time.

Now, press the SS key and then the ACCA key. Record the contents
of the accumulator below.

ACCA _ _

Press key CC and record the state of the N flag below.

With the negative number FF,5 in the accumulator, the negative (N)
flag is set.

HEATHKIT
CONTINUING Programming Experiments 9- 49

- 5. Press the SS key again. The program count should now be 00054
and the op code at this address is 86. Now check and record the
contents of the accumulator and the N flag.

ACCA _ _ - ===

With the positive number 77 ¢ in the accumulator, the N flag is
cleared, or reset, to 0.

From the information gathered in steps 4 and 5, what conclusions
do you reach with respect to the N flag and the contents of the
accumulator?

6. Single-step the program again. The program count is now 0007 .
Record the contents of the accumulator and the condition of the Z
flag below.

With 00, in the accumulator, the Z flag is set.

Press SS and again record the contents of the accumulator and the Z
flag below.

ACCA _ _ = _ = =

The accumulator now contains 01,¢ and the Z flag is cleared. What
istherelation between the contents of the accumulator and the Z, or
zero flag?

9-50

UNIT NINE

'HEATHKIT
CONTINUING
EDUCATION

"

7. Single-step again and record the information below.

ACCA _ _ - - = =

This step loads the number 92, into the accumulator. Bit 7 of the
accumulator contains a 1, so the N flag is set. Naturally, the Z flag is
cleared. The next instruction will add C6,4 to the contents of the
accumulator. As shown below, this operation should generate a

carry.
1001 0010 = 92,
1100 0110 = CBy
0101 1000 = 158
1
CARRY——--f

Press the SS key and record the information below.

ACCA _ _ - - =
NZVC

The 8-bit accumulator cannot hold the 9-bit sum. However. the
carry generated by the addition sets the C flag.

8. This step loads the number 08,4 into the accumulator. Press the SS
kev and record the information below.

ACCA _ _ - - = _
NZVC

Notice that loading this new number into the accumulator didn't
affect the carry (C) flag. The next step will add 08,; to the contents of
the accumulator (08).

9. Press the SS key and record the information below.

ACCA _ = - - = -
NZVC

HEATHKIT

Programming Experiments

The accumulator now contains the sum of the addition (10,5) and
the carry flag is cleared.

From the results of steps 8 and 9, you might conclude that the carry

flag can be cleared by another thatdoes notresultina
carry.
10. Press the SS key. The program count should now be 0013. Record
the information below.
ACCA _ _ - - = -
NzVvC
This shows that the accumulator contains 01,5 and that the N, Z,
and C flags are all cleared. When the next instruction is executed,
the number 02, will be subtracted from 01,4 (the contents of the
accumulator). As shown below, the subtraction should result in a
borrow, setting the C flag.
1
Borrow—r 0000 0001 = 014
0000 0010 = 024
1111 1111 = FFy
Notice that the difference is FF,s. This will _________ the N flag.
set/clear
11. Press the SS key and record the information below.

ACCA _ _ - — =
NzZVC

As expected, the difference produced is FF . Also, the N flag is set,
indicating a negative number is in the accumulator and the C flag
indicates a borrow occurred.

The next step will execute the instruction that loads 77,5 into the

accumulator. After this LDA operation, the C flag willbe .
set/cleared

9-51

9-52

UNIT NIiNE

HEATHKIT
CONTINUIRG
_EDUCATION”

12.

13.

ot

Press the SS key and record the information below.

ACCA _ _ - - =
NZVC

Notice that the C flag is still set and that 77 4 is in the accumulator.
Now we will subtract 66,; from the accumulator contents (77).

Press the SS key and record the information below.

ACCA _ _ - - = _
NZVC

Thedifference(11,4) isnow stored in the accumulator and, since no
borrow is generated, the C flag is cleared.

In this step, the first instruction loads the accumulator with the
number 49,,. The next instruction adds the number 60,5 to 49,4. As
shown below, the addition of these numbers causes an overflow
into the sign bit (bit 7) and the sum, A9,4, appears to be a negative
number.

0100 1001 = 49,
0110 0000 = 604
1010 1001 = A9,

Overflow changes —
sign bit,

Of course, this is incorrect and the MPU must be notified of this
overflow. This is the purpose of the V flag.

Press the SS key and record the information below.
ACCA _ _ _ _ _ _
NZVC

The number 49,4 is in the accumulator and the N, Z, V, and C flags
are cleared.

Programming Experiments

Single-step once more and then record the information below.

ACCA__ _ _ - _
NZVC

The sum A9, is now in the accumulator. Notice that the N and V
flags are set, indicating that the number in the accumulator is
negative and that an overflow occurred.

14. When the next instruction is executed, the number 10,4 will be
loaded into the accumulator.

Single-step the program and record the information below. Notice
that the op code 3E (a halt) is the next instruction, so the program is
finished.

ACCA__ _ ___
NZVC

The accumulator contains the number 10,4, and all flags cleared.
From this, you might conclude that any instruction that doesn’t

produce an overflow in the accumulator will ________ the V flag.
set/clear

Discussion

In this portion of the experiment, you stepped through a simple program
that manipulated the condition code registers. In step 4, the negative
number FF,s was loaded into the accumulator. This set the N flag to 1,. In
step 5, the positive number 77, was loaded into the accumulator. And, as
you noted, the N flag was cleared or reset to 0,. From these two steps you
should have concluded that when the number in the accumulator is
negative, the N flag is set. And when the accumulator contains a positive
number, the N flag is cleared.

In step 6, the accumulator was loaded with 00,. This set the Z flag to 1..
Next, when 01,5 was loaded, the Z flag was reset or cleared to 0,. Your
conclusion should have been that when the accumulator contains 00,4,
the Z flag is set. If it contains any number other than 00,4, the Z flag is
cleared.

9-53

9-54

UNIT NINE

HEATHKIT

CONTINUING
_EDUCATION

N

Next, you examined the C flag. When a carry was generated bv the
addition of the two numbers. 92 ; and C6,4, the C flag was set. In step 8.
you noted that merely loading a new number into the accumulator did
not clear the C flag. The carry flag was cleared by another addition that
did not result in a carry. Your conclusion should have been that the C flag
can only be cleared by an arithmetic operation that does not result in a
carry.

As you proved in steps 10 and 11, a subtraction that resuits in a borrow
also sets the C flag. Again. the C flag was cleared by an arithmetic
operation, in this case a subtraction, that did not generate a borrow.
Therefore, the C flag can only be cleared or reset to 0, by an arithmetic
operation that does not result in a borrow or carry.

You concluded this phase of the experiment by adding two positive
numbers, the sum of which overflowed into the sign bit of the ac-
cumulator. This set the V or overflow flag, showing that the sum should
not be a negative number as the N flag indicated. The next LDA instruc-
tion cleared the V flag. From this, you should conclude that the V flag is
cleared by any instruction that doesn’t produce an overflow.

In the next sections of this experiment, you will step through a few
branching programs that illustrate the use of the branch always (BRA)
instruction and certain conditional branch instructions. These branch
instructions were discussed in Unit 4, and you will verify their operation.
We'll begin with the multiply by repeated addition program.

Programming Experiments

Procedure (Continued)

15. Enter the program listed in Figure 9-25 into the Trainer. This
program multiplies 05,5 and 02,4 and stores the product in address
0013,. Recheck the program to insure that it’s entered correctly.

16. This is the same program that you stepped through in Unit 4.
Notice that the program contains two branch instructions; the BEQ
(Branch if Equal Zero) at address 0005,,and the BRA (Branch Al-
ways) at address 000E .

The branch if equal zero (BEQ) instruction implies by it’s name that

a conditional branch will occur when the _________ flag is set.
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 CLRA Clear the accumulator.

0001 = STA Store the product

0002 13 in location 13.

0003 LDA Load the accumulator with the

0004 12 multiplier from location 12,

0005 BEQ If the multiplier is equal to zero,

0006 — 09 branch down to the Halt instruc-
tion.

0007 DECA Otherwise, decrement the multip-
lier.

0008 STA Store the new value of the

0009 12 multiplier back in location 12.

000A LDA Load the accumulator with the

000B 13 product from location 13,.

000C ADD Add

000D 11 the multiplicand to the product.

000E BRA Branch back to instruction

000F F1 in location 01.

0010 L> HLT Halt.

0011 05 Multiplicand.

0012 02 Multiplier.

0013 — Product.

Program to multiply by repeated addition.

9-55

9-56

HEATHKIT

CONTINUING
DT NN _EDUCATION”
17. Now, set the program counter to 0000 and single-step through the
program, recording the information in the chart of Figure 9-286.
Notice that you will be monitoring the Z flag. A comments column
is provided so you can make notes about each step. Use the program
listing as a reference for each op code and the corresponding
operand.
18. When the BEQ instruction is executed and the Z flag is set, the
program branches to the _______ instruction.
When the multiplier was 024, the program halted on the S
pass through the program.
If the multiplier is changed to 06,5, how many passes would the
program make before it halts?
19. Examine the contents of address 0013,; and record below.
0013 _ _.
STEP PROGRAM OPCODE ACCA zZ COMMENTS
COUNTER FLAG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 9-26

Single-stepping through the Multiply by repeated addition program.

HEATHKIT
CONTINUING

Programming Experiments 9'57

Discussion

The chart that you completed should be similar to the one shown in
Figure 9-27. Compare the charts.

The first step we don’t see, since it’s executed before the Trainer stops at
address 0001. Nevertheless, we do see the result of this clear accumulator
instruction because the accumulator contains 00. When step 1 is exe-
cuted, 00 is stored in location 0013 4. Step 2 brings us to address 00034
which loads the accumulator with the multiplier, in this example, 02 .
The BEQ instruction is next, but the Z flag is cleared so the program
continues on the normal route. Next the multiplier is decremented to 01,4
and then stored in location 0012 ,,. Now the product (00,) is loaded and
the multiplicand (05,) is added directly. This produces the new product,
05,6. Now the program encounters the BRA, or branch always instruction
and it branches back to address 0001 .

Here the new product is stored away and the multiplier is loaded again.
It’s 01,4 this time, so the program continues on through the BEQ instruc-
tion, the multiplier is decremented to 00,4, and the multiplicand 05 is
added to the product. The new product (0A) is still in the accumulator.
Once again, the BRA instruction loops flow back to address 0001,; and
the product is stored in address 0013 .

The multiplier is now loaded and, since it’s been decremented to 00, it
sets the Z flag. The BEQ instruction checks the Z flag, finds that it’s set
and branches to the halt instruction at address 0010,,. Therefore, the
program makes two complete passes, before the multiplier becomes 00 .
On the third pass through, BEQ terminates the program because the Z flag
is set.

The multiplier sets the count and determines how many additions will be
performed. If the multiplier is changed to 06, the program will make six
complete loops, halting on the seventh loop. The BEQ will only be
satisfied when the multiplier has been reduced to 00.

All branch instructions use relative addressing. In Unit 4, we discussed
the method used to calculate the destination address for a branch instruc-
tion. However, another shorthand type procedure that’s quite popular
with programmers can be used. With this technique, you simply count in
hexadecimal. For a forward branch, you begin at 00,4 and count up to the
destination address.

HEATHKIT

8 CONTINUING
9-58 | uniTNiNE _EDUCATION
STEP | PROGRAM | OPCODE ACCA z COMMENTS
COUNTER FLAG
1 0001 97 00 1 Store the product {00, in

address 0013 .

[38]

0003 96 00 1 Load the accumulator with
the multiplier (02,5) from
address 0012 .

3 0005 27 02 0 BEQ. Check the Z flag.
t It's not set so continue.
Multiplier

4 0007 1A 02 0 Decrement the multiplier (02,,).
5 0008 97 01 0 Store the new multiplier {01,4)
+ at address 0012,.
New Multiplier
6 000A 96 01 0 Load the accumulator with the
product (00) at address 0013;.
7 000C 9B 00 1 Add the multiplicand (05)
giving new product.
8 000E 20 05 0 Branch back to address
4 0001 .
New Product
9 0001 97 05 0 Store the product (05,,) in
address 0013 ..
10 0003 96 05 0 Load the accumulator with

the multiplier {01,,) located
at address 0012 .

11 0005 27 01 0 BEQ. Check Z flag.
It's not set so continue.

12 0007 1A 01 0 Decrement the multiplier (01,,).
13 0008 97 00 1 Store the new Multiplier {00,:)
k) at address 0012,4.
New Multiplier
14 : 000A 96 00 1 Load the accumulator with the
product {05 ;) at address 0013 .
15 000C 9B 05 0 Add the multiplicand (05,,)
giving new product.
16 000E 20 OA 0 Branch back to address
t 0001 ;.
New Product
17 0001 97 OA 0 Store the product (OA) in
address 0013;.
18 0003 96 0OA 0 Load the accumulator with the
multiplier (00,;) from address 0012 .
19 0005 27 00 1 BEQ. Check the Z flag.

Now it’s set. Branch to
address 0010,,.

Halt.

20 0010 3E 00

J

Figure 9-27

HEATHKIT

Programming Experiments

HEX
ADDRESS

HEX
CONTENTS

MNEMONICS/
HEX CONTENTS

18
19
1A
1B
1C
1D
1E
1F

20
21 Des
22
23
24
y A

20
?7?

Originating address

tination address

BRA

??

We wish to
Branch to here

For example, in the program of Figure 9-28, we want to branch from
address 18,5 to address 24 ;. Recall that the relative address is added to
the contents of the program counter. After the BRA instruction and its
operand (the relative address) have been fetched, the program counter is
pointing to address 1A 5. Therefore, we begin our count at address 1A .
Then we count forward in hex as shown in Figure 9-29. When we reach
the destination address, the hexadecimal count is the relative address. In
this case, it's 0A 4, and we insert this operand at address 19,.

Figure 9-28

HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
18 20 BRA
19 OA OA
(())0 (‘IA‘ Originating Address
1 1B
02 &IC
03 (AID
04 (AlE
05 g‘lF
06 (AZO
07 (A21
08 (AZZ
09 (Azs 7 Destination Address
/OA 24
Relative Figure 9-29
Address

Branching forward

9-59

9-60

UNIT NINE

HEATHKIT

CONTINUING
EDUCATION

e e

To branch backward in the program, we simply count down using nega-
tive hex numbers. It may sound more difficult, but once you are accus-
tomed to it, you will find it easier to use than the previous method you
learned.

For example, in the program shown in Figure 9-30A, we wish to branch
back to address 58 ;. The BRA instruction, at address 5D, is fetched and
the program count points to address 5F ;. Figure 9-30B shows how we
calculate the address for this backward branch. We begin with FF,, and
count down. When we reach the destination address (58,4), the count at
that point is the relative address, in this case F9.

Figure 9-31 shows another example of computing the relative address for
a larger branch. The branch instruction is at address B0, and therefore,
the origination address is B2,,. We calculate the relative address as
shown in Figure 9-31B. Starting with FF,; at address B1,5, we count down
to the destination address AO,. As the count indicates, the relative
address to get to AO,s is EEy.

HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
56 — -
57 — —
Program 58 - Destination - -
branches 39 Address - o
to here SA - -
5B — —
5C — —
5D 20 BRA
5E Originating 7 77
5F =" Address
|
HEX HEX MNEMONICS/
ADDRESS CONTENTS HEX CONTENTS
56 — —
57 —_ —
F9 58 —_ —_
.
Relative™ pa 59 > Destination — —
address fFg s5aA Address — —
FC 5B — —
FD 5C — —
FE ?D Originating 20 BRA
FF f?/ Address 9 F9
5

Figure 9-30

Branching back

Programming Experiments

HEX
ADDRESS

CONTENTS

MNEMONICS/
HEX CONTENTS

branch to
here

We wish to , AO
7 A1
A2

A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1

B2

Destination
Address

Originating
Address

HEX
ADDRESS

MNEMONICS/
HEX CONTENTS

Relative
Address

EE AO
EF A1
FO A2
F1 A3
F2 A4
F3 A5
F4 A6
F5 A7
F6 A8
F7 A9
F8 AA
F9 AB
FA AC
FB AD
FC AE
FD AF
FE BO
FF B1

B2

Figure 9-31

9-61

9-62

UNIT NINE

HEATHKIT
CONTINUING
EDUCATION

"

In the next section of this experiment, vou will write a program that will
divide by repeated subtraction. You will probably have two branches in
this program; a forward branch and a branch back. Use this new
technique to calculate the relative addresses for both branches.

Procedure (Continued)

20. InUnit4, wediscussed a program that divides by repeated subtrac-
tion. The flow chart for this program isshown in Figure 9-32. Using
this flow chart as a guide and the instructions presented in Figure
9-33, write a program that divides by repeated subtraction.

‘ START }

Clear
Accumuiator

> ~

Store
Quotient

L _

Load
Dividend

|

Subtract
Divisor

o

Load
Quotient

l _

increment
Quotient

] ~

Store
Dividend

Figure 9-32 _

Flow chart for dividing by repeated subtraction.

HEATHKIT N o6
CONTINUI rogrammin i -
EDUCATION og g Experiments 3
—_——
ADDRESSING MODE
INSTRUCTION MNEMONIC IMMEDIATE DIRECT RELATIVE | INHERENT

Load Accumulator LDA 86 96

Clear Accumulator CLRA 4F

Decrement Accumulator DECA 4A

Increment Accumulator INCA 4C

Store Accumulator STA 97

Add ADD 8B 9B

Subtract SUB 80 90

Branch Always BRA 20

Branch if Carry Set BCS 25

Branch if BEQ 27

Equal Zero
Branch if Minus BMI 2B
Halt HLT 3E

Figure 9-33
Instructions to be used.

21. Now load the program into the Trainer. Let the dividend be 0B,
and the divisor be 05,5. Change the program counter to the starting
address of your program and single-step through the program,
recording the information in the chart of Figure 9-34.

22. Examine the contents of the address that stores the dividend and
the quotient. If you followed the flow chart, the address where the
dividend is stored should now contain the remainder from the
division. Record the contents below.

Quotient Remainder

9-64

HEATHKIT

CONTINUIRG
Tt som
STEP PROGRAM OPCODE ACCA N COMMENTS
COUNTER FLAG,

Figure 9-34

HEATHKIT
CONTINUING

——eaa

Programming Experiments

Discussion (Continued)

Now you’ve written a program that incorporates an unconditional branch
and a conditional branch. Hopefully, you calculated the relative address-
es using the shorthand technique just discussed. Our program for the
divide by repeated subtraction is listed in Figure 9-35. If you followed the
flow chart, your program should be similar to this.

HEX HEX MNEMONIC/HEX COMMENTS
ADDRESS CONTENTS CONTENTS
0000 4F CLRA Clear the accumulator.
0001 97 —> STA Store in the quotient which
0002 13 13 is at address location 13 .
0003 96 LDA Load the accumulator with the
0004 11 11 dividend from location 11.
0005 0 SUB Subtract the
0006 12 12 divisor from the dividend.
0007 2B BMI If the difference is negative,
0008 07 — 07 branch down to the Halt
instruction.
0009 a7 STA Otherwise, store the difference
000A 11 11 back in location 11,s.
000B 96 LDA Load the accumulator with the
000C 13 13 quotient.
000D 4C INCA Increment the quotient by one.
000E 20 BRA Branch back to instruction
000F F1 F1 in location 01.
0010 3E - HLT Halt.
0011 OB OB Dividend (11,4).
0012 05 05 Divisor (5,4)-
0013 _ —_ Quotient.
Figure 9-35

Dividing by repeated subtraction.

9-65

9-66

HEATHKIT

CONTINUING
UNIT NINE EDUCATION
STEP PROGRAM OPCODE ACCA N COMMENTS
COUNTER FLAG
1 0001 97 00 0 Store the quotient {00, at
address 0013 .
2 0003 96 00 0 Load the accumulator with the
dividend frecm address 0011 ,.
3 0005 90 OB 0 Subtract the divisor (05,4} at
* address 0012, from the accumulator.
Dividend
4 0007 2B 06 0 BMI. Check the N flag.
4 It's not set so continue.
After subtraction
5 0009 97 06 0 Store the ditference (06,,) back
in address 0011,,.
6 000B 96 06 0 Load the accumulator with the
quotient {00,;) at address 0013 ;.
7 000D 4C 00 0 Increment the quotient.
8 000E 20 01 0 Branch back to the instruction
t at address 0001 ;.
Quotient after INC
9 0001 97 01 0 Store the quotient {01, at
address 0013 .
10 0003 96 01 0 Load the accumulator with the
dividend {06, at address 0011 .
11 0005 90 06 0 Subtract the divisor {03,,) at
+ address 0012, from the accumulator.
Dividend Now
12 0007 2B 01 1] 3MI. Check the N flag.
+ [t’s not set so continue.
After Subtraction
13 0009 97 01 0 Store the difference (01,;) back
in address 0011,,.
14 000B 96 01 0 Load the accumulator with the
quotient (G1,,) at address 0013,;.
15 0ocD 4C 01 0 Increment the quotient.
16 000E 20 02 0 Branch back to the instruction
* at address 0001 .
Quotient after INC,
17 0001 97 02 0 Store the quotient (02 ;) at
address 0013 .
18 0002 96 02 0 Load the accumulator with
the dividend (01,) at address 0011,
19 0005 90 01 0 Subtract the divisor {05,) at
address 0012 ,; from the accumulator.
20 0007 2B FC 1 BMI. Check the N flag.
Py Now it's set so branch to
Negative Number the instruction at address 0010,
21 0010 3E FC 1 Halt.

Figure 9-36

HEATHKIT
CONTINUING

e

Programming Experiments J 9'67

Notice that we used the BMI (Branch if Minus) conditional branch in-
struction. Therefore, the N or negative flag will satisfy the branch when
it’s set. Figure 9-36 charts our program as we single-stepped through it.
Since the program subtracts the divisor from the dividend and stores the
difference as the new dividend, at the conclusion of the program the
dividend is actually the remainder of the division. When 0B is divided
by 05,4, the quotient should be 02,5 and the remainder 01 .

So far, we've used the conditional branch instructions only to exit a loop
and then halt program execution. However, these branch instructions
become even more powerful when they are used to “chain” together
different portions of a program. Figure 9-37 shows an example of this
chaining effect. The program starts and runs through the first loop until
the conditional branch BEQ is satisfied. Then it exits this loop and starts
another. When the BEQ condition is satisfied in the second loop, another
exit is performed, and another portion of the program is executed.

Clear Binary
Resuit
Load Hundreds
Digit
Decrement
Hundreds
digit
Store
Hundreds
digit
I Load Binary
Resuit
Decrement
Load Bi e
nu.;?‘m tens digit [
I L Add units
digit
Store tens
Add 100.. digit 1
l I Store Binsry
Resuit
Store Binary Load Binary
Result Resuit |
Add 10,,
Figure 9-37 l
Conditional branches can chain)
Store Binary
together portions of a program. Resunt

9-68

UNIT NINE

'HEATHKIT
CONTINUING
_EDUCATION

S %

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 4F CLRA Clear the Accumulator.
0001 97 STA Store 00
0002 2B 2B in location 2B. This clears the binary result.
0003 96 LDA Load direct into the accumulator
0004 28 28 the hundreds BCD digit.
0005 27 BEQ If the hundreds digit is zero, branch
0006 OB OB forward to the instruction in location 12
0007 4A DECA Otherwise, decrement the accumulator.
0008 7 STA Store the result as the new
0009 28 28 hundreds BCD digit.
000A 96 LDA Load direct into the accumulator
000B 2B 2B the binary result.
000C 8B ADD Add immediate
000D 64 64 100,, to the binary result.
000E 97 STA Store away the new
000F 2B 2B binary result.
0010 20 BRA Branch
0011 F1 F1 back to the instruction in location 03 .
0012 96 LDA Load direct into the accumulator
0013 29 29 the tens BCD digit.
0014 27 BEQ If the tens BCD digit is zero, branch
0015 OB OB forward to the instruction in location 21.
0016 1A DECA Otherwise, decrement the accumulator.
0017 97 STA Store the result as the new
0018 29 29 tens BCD digit.
0019 96 LDA Load direct into the accumulator
001A 2B 2B the binary result.
001B 8B ADD Add immediate
001C OA 0A 10,, to the binary result.
001D 97 STA Store away the new
001E 2B 2B binary result.
001F 20 BRA Branch
0020 F1 F1 back to the instruction in location 12,.
0021 96 LDA Load direct into the accumulator
0022 2B 2B the binary result.
0023 9B ADD Add direct
0024 2A 2A the units BCD digit.
0025 97 STA Store away the new
0026 2B 2B binary result.
0027 3E HLT Halt.
0028 01 01 Hundreds BCD digit.
0029 01 01 Tens BCD digit.
002A 07 07 Units BCD digit.
002B — — Reserved for the binary result.

Figure 9-38

Program for converting BCD to binary.

HEATHKIT
CONTINUING

Programming Experiments

A strategically placed conditional branch at the end of the program can
cause a branch back to the beginning that will repeat the program again
and again. In the next portion of this experiment, you will load the
BCD-to-binary conversion program that you studied earlier. Then you
will step through the program and watch as the Trainer executes each
instruction.

Procedure (Continued)

23.

24.

25.

26.

27.

Load the program listed in Figure 9-38 into the Trainer. The BCD
number 117, will be converted to binary by this program.

The BEQ instruction is used for the conditional branches in this
program. This means that MPU will monitor the flag to
determine if the condition is set.

Now set the program counter to 0000 and single-step through the
program recording the information in the chart of Figure 9-39.
Notice that, at strategic steps, you should stop and answer ques-
tions before you continue.

What is the hundreds BCD digit at thistime? _____ Theresult is
now 64, whichis _____ in the decimal number system.

Now return to the Trainer and continue stepping through the
program.

What is the tens BCD digit at this time?

Theresultis now 6E . This is the equivalent of
number system.

in the decimal

Now return to the Trainer and step through the remainder of the
program.

Examine address 002B,; and record the result below.

18

Convert this number to its decimal equivalent.

754 T —— 40

9-69

HEATHKIT

CONTINUING
9-70 | uniT NiNE EOUCATION
STEP | PROGRAM | OPCODE ACCA z COMMENTS
COUNTER FLAG
1
2
3
4
3
6
8

Stop! Return to Step 25.

Stop! Return to step 26.

Figure 9-39

HEATHKIT
CONTINUING

Programming Experiments

o,

Discussion

Now you've verified the operation of the BCD-to-binary conversion pro-
gram. The chart that you completed should match the one shown in
Figure 9-40.

Since the BEQ instruction is used for the conditional branches in the
program, we monitored the Z flag. In this example, the BCD number 117,
was converted to its binary equivalent 75,,. This program will convert
BCD numbers as high as 255,,, to their binary equivalent.

The program isn’t as complicated as it might appear. The hundreds and
tens BCD digits are used to set a count. Each pass through a loop decre-
ments the BCD digit, or count, and then adds the equivalent hexadecimal
positional value for that BCD digit. For example, in the hundreds conver-
sion loop, 644 is added to the binary result for each hundreds BCD digit.
Hence, the BCD digit sets the count. Then the count is decremented by
one and the program loops back and runs through again. When the count
is zero, that BCD digit has been added the correct number of times and the
program branches off to another loop. This continues until the program
halts.

Stepping through the program, you found that after Step 8, the Trainer
had completed one loop through the hundreds BCD portion of the pro-
gram. The count was 00,; and the binary result was 64,4, or the binary
equivalent of 100,,. On the next pass through, the program branches to
the tens BCD loop.

The first loop through, the tens BCD portion of the program was com-
pleted at step 18. The binary result was 6E,;, which is the equivalent of
110,. The tens BCD digit had been decremented to 00,,. Then all that
remained was to add the units BCD digit (07,) and the conversion
process was complete.

You verified the final result by checking the binary result at location
002B,s. Here you found the hex number 75,,. When you converted this
number to its decimal equivalent, you found that 75,5 equals 117,,. Also,
if you converted 75,4 to binary, you would find the number 0111 0101,,
which is the (binary) equivalent of 117, so the program works.

9-71

9'72 UNIT NINE

HEATHKIT

CONTINUING
_Foucario

e

STEP { PROGRAM § OPCODFE ACCA Z COMMENTS
COUNTER FLAG
1 0001 97 N0 1 Store 00 in address 002B,,.
This clears the binary result
2 0003 96 00 1 Load the accumulator with
the Hundreds BCD dizit 101,.).
Hundreds
3 0005 27 BCD— 01 0 BEQ. Check the Z flag.
Digit it’s clear so continue.
4 0007 1A 01 0 Decrement the BCD Hundreds Digit.
New—
5 G008 97 Hundreds 00 1 Store the new Hundreds Digit (00).
Diait
6 000A 96 00 1 I.oad the accumulator with the
Binary Result (00,,).
7 000C 8B 00 1 Add to the binary result
64 .
Binarv—
8 000E 97 Result 64 0 Store away the new
Now hinary result.
9 0010 20 64 0 Branch back to address 0003 ..
10 0003 96 64 0 [.oad the accumulator with the
Hundreds BCD digit {00).
11 0005 27 00 1 BEQ. Check the Z flag.
It's set so branch to address 0012,.
12 0012 96 00 1 Load the accumulator with the
tens BCD digit (01,,).
Tens
13 0014 27 BCD-— 01 0 BEQ. Check the Z flag.
Digit It's clear so continue.
14 0016 1A 01 0 Decrement the tens BCD digit {01,,].
New
15 0017 97 Tens— no 1 Store the new tens BCD digit.
Diait
16 0019 46 00 1 1.oad the accumulator with
the binary result (64,
17 001B 8B 64 0 Add OA,. to the binary result.
New
18 001D 97 Binary-» 6E 0 Store away the new binary
Result result.
19 001F 20 6E 0 Branch back to address 0012,,.
20 0012 96 6E 0 l.oad the accumulator with the
tens BCD digit {00).
21 0014 27 00 1 BEQ. Check the Z flag.
It’s set so branch to address 0021...
22 n021 96 00 1 l.oad the accumulator with the
binarv result (6E.,).
23 0023 3B 6E 0 Add the units BCD digit 107,,).
New
24 0025 97 Binary— 73 0 Store the new binary result (73 ,).
Result
25 0027 3E 75 0 Halt.
Figure 9-40

Single-stepping through the BCD-to-binary conversion program.

Programming Experiments

The most frequent mistake made by programmers when using the branch
instructions is the improper computation of the relative address. An
improperly coded relative address not only prevents the program from
executing properly, but can even wipe out portions of the program. In the
next section of this experiment, you will witness the result of an incorrect
relative address and the effect it has on the program. In this example, we
will use the binary-to-BCD conversion program you studied earlier.

Procedure (Continued)

28.

29.

30.

Load the program listed in Figure 9-41 into the Trainer. This
program should convert the binary number 0111 0101, (75,) into
it's BCD equivalent. However, one of the relative addresses is
incorrect. Part of this exercise is to locate the incorrect relative
address and correct it.

Now set the program counter to 0000 and single-step through the
program. Record the results in the chart of Figure 9-42. Notice that
we're monitoring the carry (C) flag because the program uses the
BCS (Branch if Carry Set) instruction.

Examine addresses 002B,¢, 002C,, and 002D,; record the results
below. '

002B __ ____ Hundreds BCD Digit
002C __ ___ Tens BCD Digit
002D __ ___ Units BCD Digit

Obviously, there is something wrong with the program. Although
the hundreds and tens digits are believable, the units digit of 11 is
impossible. Remember, a decimal number can only have a units
digit of from 0 to 9.

9-73

9-74 l UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

=

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 4F CLRA Clear the accumulator.
0001 97 STA Store 00
0002 2B 2B in location C02B,s. This clears the hundreds digit.
0003 97 STA Store 00.
0004 2C 2C in location 002C,s. This clears the tens digit.
0005 97 STA Store 00
0006 2D 2D in location 002D, This clears the units digit.
0007 96 LDA Load direct into the accumulator
0008 2A 2A the binary number to be converted.
0009 80 SUB Subtract immediate
000A 64 64 100.
000B 25 BCS If a borrow occurred, branch
000C 0A 0A forward to the instruction in location 0016,,.
000D 97 STA Otherwise, store the result of the subtraction
000E 2A 2A as the new binary number.
000F 96 LDA Load direct into the accumulator
0010 2B 2B the hundreds digit of the BCD resuit.
0011 4C INCA Increment the hundreds digit.
0012 97 STA Store the hundreds digit
0013 2B 2B back where it came from.
0014 20 BRA Branch
0015 F1 F1 back to the instruction at address 0007 ;.
0016 96 LDA Load direct into the accumulator
0017 2A 2A the binary number.
0018 80 SUB Subtract immediate
0019 0A 0A 106.
001A 25 BCS If a borrow occurred, branch
001B 09 09 forward to the instruction in location 0025 .
001C 97 STA Otherwise, store the result of the subtraction
001D 2A 2A as the new binary number.
001E 96 LDA Load direct into the accumulator
001F 2C 2C the tens digit.
0020 1C INCA Increment the tens digit.
0021 97 STA Store the tens digit.
0022 2C 2C back where it came from.
0023 20 BRA Branch
0024 F1 F1 back to the instruction at address 0016.
0025 96 LDA L.oad direct into the accumulator
0026 2A 2A the binarv number.
0027 97 STA Store it in
0028 2D 2D the units digit.
0029 3E HLT Hait.
002A 75 75 Piace binary number to be converted at this address.
002B - — Hundreds digit A
002C — — Tens digit Reserved for
002D - - Units digit BCD result.

Figure 9-41

A program with an incorrect relative address.

HEATHKIT

Programming Experiments

9-75

STEP | PROGRAM OPCODE ACCA C

COUNTER FLAG

COMMENTS

D N G AW N -

31.

32.

Figure 9-42
Single-Stepping through the binary-to-BCD conversion program.

Use the program listing and the chart that you’ve compiled and
locate the error in the program. Then record the address of the
instruction below.

HINT: The problem is with the relative address for one of the
branch instructions. When one of these addresses is incorrect, the
program branches to the wrong address, possibly skipping por-
tions of the program. Therefore, first determine the portions of the
program that produced the wrong result and work back until you
find the problem.

Address _ __ __ __ Incorrect Relative Address — __

Now calculate the correct relative address (operand) and record it
below.

Correct Relative Address __ __.

9-76

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

g

Discussion

This exercise should have demonstrated the versatility of your Trainer to
assist you in ‘‘debugging”’ programs. When you examined addresses
002B,4, 002C,6, and 002D,4, you found these results.

002B 0 1 Hundreds BCD Digit
002C 0 O Tens BCD Digit

002D 1 1 Units BCD Digit

Obviously, the units BCD digit is incorrect. Since the units digit is wrong,
we begin to debug at this portion of the program. This happens to be the
least complex section of the program because the binary number is
simply loaded into the accumulator and stored in address 002D,,. Com-
paring the chart that you compiled against the program listing, we find
that this portion of the program seems to be executing correctly.

Therefore, we move back to the tens BCD digit portion of the program.
Checking the program listing, we find that the tens BCD portion of the
program begins at address 0016,4. But as the chart in Figure 9-43 shows,
when the program is single-stepped the tens BCD digit loop actually
starts at address 0017, This is the wrong address. We find the problem
when we move back to step 14 of the chart. This is the BCS (Branch if
Carry Set) instruction at address 000B ;. However, instead of branching to
address 0016, as the comments column suggests, the program goes to
address 0017 ;. Therefore, the relative address at address 000C,; must be
incorrect. When we check this relative address, we find that it should be
09,6, instead of 0A .

But, how did this incorrect operand affect the program? Following the
chart in Figure 9-43, we find that the hundreds BCD portion of the
program worked correctly. On the second loop through this portion of the
program, the subtraction resulted in a borrow and the C flag was set.
Hence, the BCS instruction produced the desired branch.

Programming Experiments 9" 77

CONTY
EDUCATION
—_————
STEP { PROGRAM OPCODE ACCA C COMMENTS
COUNTER FLAG
1 0001 97 00 0 Store 00 in Hundreds Digit.
2 0003 97 00 0 Store 00 in tens Digit.
3 0005 97 00 0 Store 00 in units Digit.
4 0007 96 00 0 Load the accumulator with
the Binary number (75,4).
5 0009 80 75 0 Subtract 64,5 from accumulator
6 000B 25 11 0 BCS. Check C flag for borrow.
It’s clear so continue.
7 000D 97 11 0 Store away the new binary
number.
8 000F 96 11 0 Load the accumulator with the
Hundreds Digit (00).
9 0011 4C 00 0 Increment the Hundreds Digit.
10 0012 97 01 0 Store the Hundreds Digit.
11 0014 20 01 0 Branch back to address 0007 .
12 0007 96 01 0 Load the accumulator with the
Binary Number (11,4).
13 0009 80 11 0 Subtract 64,4 from accumulator.
BCS. Check C Flag for borrow.
14 000B 25 AD 1 It’s set so branch to address 0016 .
Wrong
Address
15 0017 2A AD 1 What’s this?
16 0019 0OA AD 1
17 001A 25 AD 1 BCS. Check C Flag.
It's still set so branch to
address 0025,4.
18 0025 96 AD 1 Load the accumulator with
the Binary number.
19 0027 97 11 1 Store it in the units Digit.
20 0029 3E 11 1 Halt.
Figure 9-43

Locating the incorrect relative address.

9-78

UNIT NINE

HEATHKIT
CONTINUING
EDUCATION

s

But, instead of branching to address 00165, where we would have found
a load accumulator instruciion (96,5) with an operand of 2A 4, the pro-
gram branches to address 0017 5. The Trainer now interprets the operand
(2A}6) as an instruction or op code. The op code 2A, as you may recall,
represents a valid instruction which is *‘Branch if Plus.” The MPU checks
the N flag and finds it set, because at this time, the negative number AD
is in the accumulator. Therefore, the condition is not satisfied, and the
Trainer continues on to the next instruction.

Single-stepping again (now we are at step 16) the next op code is 0OA.
Actually, this should be the operand for the subtract instruction at ad-
dress 0018,4. But since we are off by one, it appears to be the op code. The
Trainer checks the op code OA and finds that it’s an inherent instruction
to “clear the overflow flag.” It executes this instruction.

Step 17 finds the program at address 001A ;4. Here, we encounter another
BCS conditional branch instruction. The C flag is still set so we branch to
address 0025,5. The program works properly from this point on.

Therefore, this one incorrect relative address caused the program to skip
the tens BCD portion of the program. The tens unit was never subtracted,
so it carried over into the units BCD digit. This produced the wrong units
digit of 11,,.

Procedure (Continued)
33. Now change the operand at address 000C,,; from 0A 4 to 09,,.

34. Also change the number at address 002A,; to 75,. This is the
number that the program will convert to its BCD equivalent.

35. Reset the program counter to 0000 and single-step through the
program comparing the program listing with the results that vou
obtain.

HEATHKIT
CONTINUING

———

Programming Experiments l 9‘79

36. Examine the addresses listed below and record the information
stored there. :

002B __ __ Hundreds BCD Digit
002C __ __ Tens BCD Digit
002D _ _ Units BCD Digit

Is this the correct BCD representation for the number 75,47

Discussion

When the program is corrected by inserting the relative address (09,6} at
address 000C,¢, we find that it works perfectly. After single-stepping
through the program, we examine the BCD digits stored at addresses
002B,¢, 002C;6, and 002D,¢. The hundreds digit is 01, the tens digit is
01,0, and the units digit is 07,,. Therefore, the BCD equivalent of the
binary number 0111 0101, (75,) is 117,,.

9-80

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

T T

Experiment 6
ADDITIONAL INSTRUCTIONS

OBJECTIVES:

To verify the operation of the ADC instruction when used
in a multiple-precision addition program.

To investigate the hazard of using the ADC instruction
when a carry is not desired.

To demonstrate your ability to write a multiple-precision
subtraction program using the SBC instruction.

To demonstrate your ability to write a routine that will
multiply any 4-bit binary number times 16,, using the
ASLA instruction.

To verify the operation of a BCD packing program that
uses the ASLA instruction.

To verify the operation of the DAA instruction when used
in a BCD multiple-precision addition program.

HEATHKIT
CONTINUING
EDUCATION

P

Programming Experiments

Introduction

One of the measures of a microprocessor’'s power is the size of the
instruction set. In other words, more instructions generally mean more
potential power. You saw the economy that resulted with the addition of
branch instructions in the previous experiment. In this experiment, we
will examine four additional instructions; the ADC or add with carry, the
SBC or subtract with carry, the ASLA or arithmetic shift accumulator left,
and the DAA or decimal adjust accumulator.

The discussion in Unit 4 explained the purpose of each instruction. In
this experiment, we will restrict our activity to verifying that each in-
struction works as explained.

In the previous experiment, you examined the condition code registers
and how the MPU monitors these flag registers to initiate conditional
branches. Yet, these condition code registers are also monitored for other
instructions. For example, the ADC (add with carry) and SBC (subtract
with carry) instructions key on the C or carry flag. If an ADC instruction is
executed and the carry flag is set, one is added to the least significant bit
in the accumulator. Likewise, if the C flag is set when an SBC instruction
is executed, one is subtracted from the least-significant bit of the ac-

“cumulator. Remember, the C flag represents a “borrow” to the subtract

instruction.

In the first portion of this experiment, we will verify the operation of the
ADC instruction with a program for multiple precision arithmetic. Then
we will examine one of the hazards of using this instruction.

9-81

9-82

UNIT NINE

'HEATHKIT
CONTINUING
EDUCATION

s

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 01 NOP No operation
0001 96 LDA Load the accumulator direct with the
0002 OE OE least significant byte of the addend.
0003 9B ADD Add direct the
0004 10 10 least significant byte of the augend.
0005 97 STA Store the result in the
0006 12 12 least significant byte of the sum.
0007 96 LDA Load the accumulator direct with the
0008 OF OF most significant byte of the addend.
0009 99 ADC Add with carry direct the
000A 11 11 most significant byte of the augend.
000B 97 STA Store the result in the
000C 13 13 most significant byte of the sum.
000D 3E HLT Halt
000E EA EA Least significant byte

addend
000F CcO CcO Most significant byte
0010 93 93 Least significant byte

augend
0011 1B 1B Most significant byte
0012 — — Least significant byte

sum
0013 — — Most significant bvte

Figure 9-44

Program for multiple-precision addition.

CONTINUING Programming Experiments 9-83

Procedure
1. Turn on the Trainer and press the RESET key.

2. Load the program listed in Figure 9-44 into the Trainer. This
program performs multiple-precision addition of two 16,, bit num-
bers. The augend 1B93,; will be added to the addend COEA 4 by
this program. Of course, the program can add any numbers that are
16,, bits or less.

3. Change the program counter to 0000 and single-step through the
program, recording the information in the chart of Figure 9-45.
Notice that we are monitoring the carry (C) flag.

4. Examine memory location 0012,; and 0013, and record the sum
below.
SUM _ ___
STEP | PROGRAM OPCODE ACCA C COMMENTS
COUNTER FLAG
1
2
3
4
5
6
7

Figure 9-45

HEATHKIT

9-84 [UNIT NINE OUCATION.
5. Add the binary numbers below. These numbers are the binary
equivalent of the two hex numbers added by the program just
executed.
MSB LSB

COEA, = 1100 0000 1110 1010

1B93,, = 0001 1011 1001 0011

SUM =

Now, convert the binary sum to its hexadecimal equivalent and
record below.

SUM _ _ _ _
Does this match the sum obtained in step 47
6. Now load the program of Figure 9-46 into the Trainer. This pro-
gram simply adds two binary numbers and produces a carry.

Hence, it will set the C flag. You will see its purpose in a moment.

Execute the program by pressing the DO key and then entering
address 0000.

7. Examine the carry (C) condition code register. The C flag is
set/reset
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 86 LDA Load the accumulator immediate
0001 EA EA with EA .
0002 8B ADD Add immediate
0003 93 93 93
0004 3E HLT Halt

Figure 9-46
Program adds two numbers and produces carry.

Programming ExperimenmJ 9'85

Enter the program listed in Figure 9-47 into the Trainer. Notice that
this is the same multiple-precision addition program previously
executed, with the exception that the ADD Instruction has been
replaced by the ADC instruction, as shown by the shaded section.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 01 NOP No operation
0001 96 LDA Load the accumulator direct with the
0002 least significant byte of the addend
AR \\\ \\\\\ \\\\\\\\\\\\\\\\\\\\\\\\ \
\ 0003 \ \\ \\ ADC \ with carry direct t e\\\\\\\\\\\
VA \\\ A IR SRR R R
0004 least significant byte of the augend.
0005 97 STA Store the result in the
0006 12 12 least significant byte of the sum.
0007 96 LDA Load the accumulator direct with the
0008 OF OF most significant byte of the addend.
0009 99 'ADC Add with carry direct the
000A 11 11 most significant byte of the augend.
000B 97 STA Store the result in the
000C 13 13 most significant byte of the sum.
000D 3E HLT Halt
000E EA EA Least significant byte
addend
000F CcOo Cco Most significant byte
\
0010 93 93 Least significant byte
> augend
0011 1B 1B Most significant byte J
0012 - — Least significant byte
sum
0013 — — Most significant byte
Figure 9-47

Mutiple-precision addition program with instruction at address 0003, changed.

HEATHKIT
9-86 | uwrr e CHIL

.

9. Set the program counter to 6000 and single-step through the prog- ,
ram, recording the information in the chart of Figure 9-48.

10. Examine memory locations 0012,; and 0013,,. Record the sum
below.

SUM _ _ _ _

Compare this sum to the previous sum recorded in step 4. Are they
the same?

yes/no

Why are the sums different?

From this demonstration, what conclusion can you draw concern-
ing the use of the ADC instruction?

STEP | PROGRAM OPCODE ACCA Cc COMMENTS
COUNTER FLAG
1
2
3
4
5
6
7

Figure 9-48

HEATHKIT
CONTINUING
EDUCATION

Programming Experiments | 9' 87

="

Discussion

In steps 1 through 3 of this experiment, you loaded a multiple-precision
addition program similar to the one you studied in Unit 4. Single-
stepping through the program, you witnessed the operation of the ADC
instruction. The chart you compiled should be similar to the chart in
Figure 9-49. When you checked memory locations 0012, and 00135, you
found the LSB and MSB respectively of the 16,,-bit sum. The sum should
have been DC7D,.

In step 5 you added the binary equivalents of the hex numbers, COEA ;¢
and 1B93,¢. The sum was the binary equivalent of the sum produced by
the program, as shown below.

MSB LSB
1
COEA = 1100 0000 1110 1010
1B93¢ = 0001 1011 1001 0011
SUM = 1101 1100 0111 1101

Asyounoticed, a carry is generated by the addition of the least significant
bytes of the two numbers. When you were single-stepping through the
program, you observed this carry because the C flag was set. The addition
of the most significant bytes did not produce a carry. Therefore, the carry
flag was cleared.

STEP § PROGRAM OPCODE ACCA C COMMENTS
COUNTER FLAG

1 0001 96 Random | Random } Load the accumulator with the LSB
of Addend {EA).

2 0003 9B EA Random | Add the LSB of the Augend {93,).

3 0005 97 7D 1 Store result in LSB of sum.

4 0007 96 7D 1 Load the accumulator with the
MSB of the Addend {CO).

5 0009 99 CcO 1 Add with carry the MSB of
the Augend {1B,).

6 000B 97 DC Store result in MSB of Sum.

7 000D 3E DC Halt.

Figure 9-49

9-88

UNIT NINE

HEATHKIT
CONTINUING
SDUCATION |

e

When you converted the binary number to hexadecimal, you found that
the sum was the same as that produced by the program.

1101 1100 0111 1101

D C 7 D

In step 6, you loaded a simple program that added the numbers EA ;s and
936 Of course, the addition generated a carry, as you witnessed when
you checked the C flag and found it set.

In step 8, you loaded another multiple-precision addition program into
the Trainer. The only difference between this program and the previous
multiple-precision addition program was that the first add instruction
was the ADC (add with carry), rather than the ADD. Then you single-
stepped through the program and completed the chart of Figure 9-48.
Your chart should be similar to the one shown in Figure 9-50.

When you examined the sum at addresses 0012,; and 00134, you found
DC7E;s. The correct sum, as you verified earlier, should have been
DC7Dy. If you checked the chart compiled while single-stepping through
the program, the reason for this incorrect answer should have been
evident. The carry flag was set even before the program was executed.
Therefore, when the Trainer executed the first ADC instruction, it au-
tomatically added the carry (1.) to the sum of the least significant bytes.
Hence, the result 7E was one greater than the correct sum of 7D.

STEP

PROGRAM
COUNTER

OPCODE ACCA C COMMENTS

FLAG

0001

0003
0005

0007
0009

000B
000D

Load the accumulator with the LSB
of Addend (EA).

Add with carry the LSB of the Augend 93).

96 Random 1

99 EA 1

97 7E 1 Store result in LSB of sum.

Load the accumulator with the MSB
of Addend (CQg).

Add with carry the MSB of the
Augend (1B).

96 7E 1
99 CO 1

97 DC 0
3E DC 0

Store result in MSB of sum.

Halt.

Figure 9-50

Single-stepping through the multiple-precision addition program where both add in-

structions are ADC.

HEATHKIT
CONTINVING
EDUCATION

== ————

Programming Experiments

From this demonstration you should have reached the conclusion that
the ADC instruction should not be used unless you are positive of the
condition of the C flag. You must remember that the C flag is only reset by
an arithmetic operation that doesn’t produce a carry or a borrow. For
example, in the program that worked properly, we used the simple ADD
instruction for the first addition. Naturally, this instruction ignores the
condition of the C flag, so it doesn’t matter if it’s set or reset. This is a
simple way of playing it safe. The second addition used the ADC instruc-
tion because we wanted any carry from the least significant byte to be
reflected in the most significant byte.

The SBC (subtract with carry) instruction is similar to the ADC instruc-
tion because it also monitors the C flag to indicate a borrow. In the next
section of this experiment, you will write a program that uses the SBC
instruction for multiple-precision subtraction of 16,,-bit numbers.

Procedure (Continued)

11. Write a program that will perfrom multiple-precision subtraction
of two 16,,-bit (2-byte) numbers. The following guidelines define
the problem.

a. The program must subtract a 16,,-bit subtrahend from a 16,,-bit
minuend and store the difference in memory.

b. Use the direct addressing mode.
c. Select the op codes from the instruction listing in Figure 9-51.

12. Now load the program. Enter 97214 in the locations reserved for

the minuend and 7581, in the locations reserved for the sub-
trahend.

13. Single-step through the program and observe its operation.
Examine the locations where the difference is stored and record the

2-byte difference below.

DIFFERENCE

9-89

9-90 |

UNIT NINE

HEATHKIT

CONTINUING
_EDUCATION

= e

(START }

y

Load the
LSB of the
Minuend

Subtract the
LSB of the
Subtrahend

ADDRESSING MODE
INSTRUCTION MNEMONIC IMMEDIATE DIRECT RELATIVE INHERENT

Load Accumulator LDA 86 96

Clear Accumulator CLRA 3F
Decrement Accumulator DECA 1A
Increment Accumulator INCA 1C
Store Accumulator STA 97

Add ADD 8B 9B

Subtract sUB 80 90

Add with Carry ADC 89 99

Subtract with Carry SBC 82 92

Arithmetic Shift

Accumulator Left ASLA 48
Decimal Adjust

Accumulator DAA 19
Halt HLT 3E

y

Store Result
in LSB of
Difference

V

Load the
MSB of the
Minuend

y

Subtract with
carry the MSB
of the
Subtrahend

Y

Store Result
in MSB of
Difference

b4

< STOP)

Figure 9-52
Flow chart for

multiple-precision subtraction.

Figure 9-51
Instructions.

Discussion

If you made a flow chart of the problem, your flow chart probably looks
like the one shown in Figure 9-52. Your program should be similar to the
solution shown in Figure 9-53. After stepping through the program on
the Trainer, the difference of the subtraction should have been 21A0,,. If
you didn’t obtain this answer, go back and recheck your program.

You may have used the SBC instruction for the first subtraction. If you
did, this might explain the problem, because if the C flag is set when this
instruction is executed a 1 will be borrowed from the difference. There-
fore, your answer would have been 1 less than the correct answer, or
219F . If the carry flag was cleared before you executed the program, the
result would still be correct. '

In the next section of this experiment, we will examine the ASLA (arith-
metic shift accumulator left) instruction. You will also write a simple
program that uses this instruction to multiply any 4,,-bit number by 16,
This simple routine will prove it's usefulness later.

Recall from the discussion in Unit 4 that each ASLA operation multiplies
the contents of the accumulator by two.

Procedure (Continued)

14. Usethe instructions listed in Figure 9-51 and write a program that
uses the ASLA instruction to multiply any 4,,-bit number by 16,,.

HEATHKIT

16.

17.

multiply OF 4 (15,¢) by 16,,. Record the product below.

OF[G X 1610 =

18+
Convert the product obtained to its decimal equivalent.

Decimal equivalent

10-
Now check your result by multiplying 15,, times 16,,.

1549 X 1649 =

10

In this program, the multiplier is determined by the number of
ASLA instructions. How many ASLA instructions are required to
produce a multiplier of 4,,?

CONTINUING Programming Experiments
EDUCATION °9 9 =P

—_————

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 96 LDA Load accumulator direct with
0001 oD oD least significant byte of minuend
0002 90 SUB Subtract direct
0003 OF OF least significant byte of sub-
trahend
0004 97 STA Store result in
0005 11 11 least significant byte of difference
0006 96 LDA Load accumulator direct with
0007 OE OE most significant byte of minuend
0008 92 SBC Subtract with carry
0009 10 10 most significant byte of the sub-
trahend
000A 97 STA Store result in
000B 12 12 ’ most significant byte of difference
000C 3E HLT Halt
000D 21 21 Least significant byte :
000E 97 97 Most significant bytef “inuend
000F 81 81 Least significant byte
0010 75 75 Most significant byte Subtrahend
0011 — — Least significant byte .
0012 — — Most significant byte Difference
Figure 9-53
Program for multiple-precision subtraction.
15. Enter your program into the Trainer and then have your program

9-91

9-92

UNIT NINE

HEATHKIT
CONTINUING
EDUCATIO

= saemT

Discussion

The program for this simpleroutine is shown in Figure 8-54. Notice that it
uses 4,, ASLA instructions to produce the required multiplier of 16,,. If
your program worked properly, the final product should have been F0.
Converting this number to its decimal equivalent, we find that F0,; equals
240,,. When we multiplied 15,, times 16,,, we also found the product was
240,,. Therefore, the program works.

Only two ASLA instructions are necessary to produce a multiplier of 4,,;
three ASLA instructions will result in a multiplier of 8.

Another use for the ASLA instruction is to pack two BCD digits into a
single byte. This “packing’ can result in a significant savings of memory
if many BCD numbers are used. Let’s verify the operation of the BCD
packing program that was presented in Unit 4.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 96 LDA Load the accumulator with the

0001 09 09 4-bit multiplicand

0002 48 ASLA Shift the accumulator

0003 48 ASLA four places to the left

0004 48 ASLA multiplying the multiplicand by

0005 18 ASLA 1640

0006 97 STA Store the product

0007 0A 0A at this location

0008 3E HLT Halt

0009 OF OF 4-bit multiplicand

000A — —_ Product

Figure 9-54
Program that uses the ASLA instruction to multiply a 4-bit number times 16,,.

HEATHKIT

Programming Experiments

Procedure (Continued)

18. Enter the BCD packing program listed in Figure 9-55 into the
Trainer. The unpacked BCD numbers are 09,, and 03,.

19. Set the program counter to 0000 and single-step through the pro-
gram, recording the information below. Where it is indicated, con-
vert the hexadecimal contents of the accumulator to the binary
equivalent.

Program Op code ACCA Binary Equivaient
Count
0001 96 Random Random
0003 48
0004 48 —_—
0005 48 _—
0006 48 _
0007 9B U
0009 97 —_—
000B 3E HALT
HEX OPCODES/ MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 01 NOP Do nothing
0001 96 LDA Load into the accumulator direct
0002 oD oD the unpacked most significant
BCD digit.
0003 48 ASLA
0004 48 ASLA Shift it four places
0005 48 ASLA to the left.
0006 48 ASLA
0007 9B ADD Add the
0008 OE OE unpacked least significant
BCD digit.
0009 97 STA Store the result
000A oC oC in the packed BCD number
000B 3E HLT Halt
000C 00 00 Packed BCD number
000D 09 09 Unpacked most significant
BCD digit.
000E 03 03 Unpacked least significant
BCD digit.
Figure 9-55

Program to pack two BCD digits into a single byte.

9-93

9-94

UNIT NINE

HEATHKIT
CONTINUING

20. Examine the packed BCD number at address 000C,; and record it
below.

Packed BCD Number

Discussion

As you can see, the BCD packing program is very simple. Nevertheless,
simple routines such as this can be combined in many programs, easing
the task of programming. Most programmers either commit these general
purpose routines to memory or file them away for future reference.

The results you obtained by stepping through the program should be
similar to those shown below.

PROGRAM OP CODE ACCA BINARY EQUIVALENT
COUNT

0001 96 Random Random
0003 48 09 0000 1001
0004 48 12 0001 0010 After 1st shift
0005 48 24 0010 0100 After 2nd shift
0006 48 48 0100 1000 After 3rd shift
0007 9B 90 1001 0000 After 4th shift
0009 97 93 1001 0011
000B 3E

As the listing shows, the most significant BCD digit (09,,) is loaded into
the accumulator. Four ASLA shifts take place, moving this digit progres-
sively to the left. Following these four shifts, the most significant BCD
digit is properly positioned. Now the program simply adds the least
significant BCD (03,,) to the contents of the accumulator and then stores
the sum. Checking the address of the packed BCD number, we find 93,

When BCD numbers are added, we encounter yet another problem. Often,
the sum is the correct BCD number. But, just as frequently, it isn’t. In Unit
4, thereason for this inconsistency was discussed. However, your Trainer
has an instruction, called the “Decimal Adjust Accumulator’”’ (DAA), that
can correct the sum of BCD numbers, producing the desired result.

In the next portion of this experiment, we will demonstrate the need for
the DAA instruction by first adding two BCD numbers without using the
DAA instruction. Then we will check the sum. Next, we will correct the
program by inserting DA A instructions and again examine the BCD sum.

HEATHKIT
CONTINUING
EDUCATION

"

Programming Experiments 9‘95

Procedure (Continued)

21. Load the program listed in Figure 9-56 into your Trainer. This
program adds the BCD numbers 3792, and 5482, storing the sum
in address 0011,; and 0012,.

22. RESET the Trainer and execute the program by first pressing the
DO key and entering address 0000.

23. Again, press the RESET key and then examine the sum stored at
address 0011, and 0012 ,¢,. The most significant byte of the sum is at
address 0011, and the least significant byte is at address 0012,.
Record the sum below.

SUM _____
Is this the correct BCD sum for the addition of the numbers 3792,
and 5482,,?
yes/no
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 96 LDA Load the accumulator direct with

0001 OE OE the least significant byte of
addend.

0002 9B ADD Add direct

0003 10 10 the least significant byte of
augend

0004 97 STA Store the result in

0005 12 12 the least significant byte of BCD
sum.

0006 96 LDA Load the accumulator direct with

0007 oD 0D the most significant byte of
addend

0008 99 ADC Add with carry

0009 OF OF the most significant byte of
augend

000A 97 STA Store the result in

000B 11 11 the most significant byte of BCD
sum.

000C 3E HLT Halt

000D 37 37 Most significant byte

000E 92 92 Least significant bytef BCD Addend

000F 54 54 Most significant byte

0010 82 82 Least significant byte BCD Augend

0011 — Most significant byte

0012 — Least significant byte BCD Sum

Figure 9-56

Incorrect program for multiple-precision addition of BCD numbers.

HEATHKIT
9-96 | uniT nine ,CON?—?]N'E,

24. Now load the corrected multiple-precision BCD addition program
listed in Figure 9-57 into your Trainer. Notice that the only changes
between this program and the previous program are the additions
of the NOP instruction and the two DAA instructions following the
addition operations.

25. Change the program counter to 0000 and single-step through the
program, recording the information below.

STEP 1
PROGRAM COUNT OP CODE
STEP 2
PROGRAM COUNT OP CODE ACCA
STEP 3
PROGRAM COUNT OP CODE ACCA C FLAG
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 01 NOP Do nothing
0001 96 LDA Load the accumulator direct
with the
0002 11 11 least significant byte of addend.
0003 9B ADD Add direct
0004 13 13 the least significant byte of
augend.
0005 19 DAA Decimal adjust the sum to BCD.
0006 97 STA Store the result in the
0007 15 15 least significant byte of BCD sum
0008 96 LDA Load the accumulator direct
with the
0009 10 10 most significant byte of addend.
000A 99 ADC Add with carry the
000B 12 12 most sigrificant byte of augend.
000C 19 DAA Decimal adjust the sum to BCD.
000D 97 STA Store the result in the
000E 14 14 most significant byte of BCD sum.
000F 3E HLT Halt.
0010 37 37 Most significant byte
0011 92 9z Least significant byte { BCD Addend
0012 54 54 Most significant byte
0013 82 82 Least significant byte BCD Augend
0014 — — Most significant byte
0015 _— — Least significant byte BCD Sum

Figure 9-57
Program for adding multiple-precision BCD numbers.

—_—
HEATHKIT
CONTINUING

Programming Experiments

EDUCATION
_—c

The sum of the addition of the least significant bytes is now in the
accumulator. Is this the correct BCD sum for the numbers 92,, and
82,07

yes/no

When the DAA instruction (op code 19) is executed, will this

number be corrected ?
yes/no

STEP 4

PROGRAM COUNT OP CODE ACCA C FLAG

As you can see, the DAA instruction did correct the left-most digit
by adding 60,s to the sum. Since the result 14,, appears to be a
legitimate BCD number, how did the MPU know it was not the
valid BCD sum?

STEP 5

PROGRAM COUNT OP CODE ACCA C FLAG
STEP 6

PROGRAM COUNT OP CODE ACCA C FLAG
STEP 7

PROGRAM COUNT OP CODE ACCA C FLAG

It’s obvious that this number (8C,q) is not the BCD sum of 37,, and
54,. What number will the MPU add to 8C,¢ to produce the desired
BCD sum?

STEP 8

PROGRAM COUNT OP CODE ACCA C FLAG

STEP 9

PROGRAM COUNT OP CODE ACCA

9-97

9-98

UNIT NINE

HEATHKIT

CONTINUING
EDUCATION

26. Now examine the BCD sum at addresses 0014,s and 0015, and
record below.

SUM

10-

Discussion

When you executed the first program to add BCD numbers, it was obvious
that the sum 8C14 was not the correct BCD number. The answer should
have been 9274 ,,. Naturally, the MPU considered these BCD numbers as
hexadecimal numbers, hence, the hexadecimal sum.

However, when the program was modified by the addition of DAA
(decimal adjust accumulator) instructions after each addition operation,
the Tesult was the correct BCD number. As you stepped through the
program you saw the DAA instruction in operation.

At step 3, the BCD numbers 92,, and 82,, had been added and the
accumulator was supposedly storing the sum 14,,. A carry was generated
by the setting of the C flag. However, the sum was not correct. Instead of
14,,, the sum should have been 174,,. To the MPU, the addition looked
something like this.

1001 0010, = 92,
C FLAG 1000 0010, = 82,
1 Carry 0001 0100, 1144

If we ignore the carry, the sum 14,; appears to be a legitimate BCD
number. Nevertheless, the sum would be incorrect. Taking the carry flag
into consideration, remember it's just an extension of the accumulator,
we find the sum is i14,. In hex, this is the correct sum of the two
numbers.

-~

HEATHKIT
CONTINUING
EDUCATION

Programming Experiments

In step 4, the DAA instruction had been executed and, as you witnessed,
the number 14,; had been adjusted to the correct BCD sum of 74,,. The
carry flag was set, indicating that the sum of the two left-most 4-bit binary
numbers was larger than 1001, (9,). Actually, it was 1 0001,. When the
DAA instruction was executed, the MPU followed the conversion rules
and adjusted the sum by adding 60, as shown below.

Carry Carry
1 0001 0100, = 1 14
0110 0000, = 60
1 0111 0100, = 1 746

The result is 74, with a carry of 1,5 This is the correct BCD sum for the
two BCD numbers. If we include the carry, the result is 174,, which is
indeed the decimal sum of 92,, and 82,. However, this exceeds the
capacity of our storage locations, since they’re only 8-bits long, so the
carry is carried forward to the addition of the most significant bytes of the
numbers in the next step.

As you continued single-stepping through the program, the most sig-
nificant bytes were loaded and added with the ADC instruction. At step 7,
the sum of this addition was in the accumulator. It was obvious that the
sum 8C,; wasn’t a BCD number. To adjust this number to the correct BCD
sum, 06,; was added by the DAA instruction. The BCD adjusted sum 92,,
was the result.

In the final step of the experiment, you verified program operation by
examining the BCD sum at locations 0014, and 0015,,. Here you should
have found the sum 9274,,.

9-99

HEATHKIT
CONTINUING

3-100 | unmnine EDUCATION

Nt

Experiment 7

NEW ADDRESSING MODES

OBJECTIVES:
To demonstrate the extended addressing mode.
To demonstrate the indexed addressing mode.

To gain experience using the instruction set and registers of the
MPU.

NOTES:

1. If the Trainer vou are using has a model number ET-3400A, it will
not be necessary for you to add the two RAM IC's (listed under
Material Required) to your Trainer. After reading the introduction,
begin this experiment at Procedure step 6.

2. If the Trainer you are using has a model number ET-3400, check IC
locations IC16 and IC17. If these two locations do not contain IC’s
(2112 Heath number 443-721), begin this experiment at Procedure
step 1. lf these two lccations are equipped with the 2112 IC’s begin
this experiment at Procedure step 6.

Material Required

Microprocessor Trainer

2 — 2112-2 IC's (Hzath Number 443-721)

Introduction

In Unit 5, you learned that the MPU has two new addressing modes called
extended and indexed addressing. Either of these addressing modes can
be used to reach operands anvwhere in memorv. By contrast, the direct
addressing mode can be used only when the operand is in the first 256,
bvtes of memory.

Programming Experiments

Procedure
1. Turn your ET-3400 Microprocessor Trainer off and unplug it.
2. Locate the two 2112-2 IC’s (Heath number 443-721) that were

supplied with this course. Notice that these IC’s are packed in
conductive foam.

NOTE: These IC’s are rugged, reliable components. However, normal
static electricity discharged from your body through an IC pin to an object
can damage the IC. Install these IC’s without interruption as follows:

A. Remove the IC from its package with both hands.

B. Hold the IC with one hand and straighten any bent pins with
the other hand.

C. Refer to Figure 9-58. Position the pin 1 end of the IC over the
index mark on the circuit board.

D. Be sure each IC pin is properly started into the socket. Then
push the IC down.

SHALL
INDENTATION NOTER poy

e W

=

PiN 1 PIN 1 PIN 1 PN

Figure 9-58

3. Install one of the IC's in the empty socket labelled IC16 on the
ET-3400 Trainer.

4, Install the other IC in the socket labelled IC17.

NOTE: Until now, you could not use the extended addressing mode
because the £T-3400 Trainer had only 256,, bvtes of RAM memory. The
installation of the two RAM IC’s in the above steps has added an addi-
tional 256,, bytes of RAM memory necessary for the extended addressing
mode.

9-101

Programming Experiments l 9' 1 01 .1

5. Plug in your Trainer and turn it on.

6. Using the AUTO mode, load the numbers 00 through OF into
memory locations 0100 through 010F, respectively.

7. Using the EXAM and FWD keys, verify that the above numbers
were stored in those addresses.

Discussion

The ET-3400A Trainer required no hardware modifications to acquire
512, bytes of RAM in addresses 0000, through 01FF,4. The two 2114
RAM IC’s at IC14 and IC15 already have this capacity. However, the
ET-3400 Trainer uses 2112 RAM IC’s. The two IC’s at IC14 and IC15
contain only the first 256,, bytes of memory from 0000, to O0FF .

Therefore, to extend the RAM capacity of the ET-3400 Trainer, an addi-
tional 256,, bytes, it may have been necessary to install two additional
2112 IC’s at locations IC16 and IC17. The starting address of this new
RAM is 0100, and extends through 01FF 4 for a total of 512,, bytes. When
operands are placed at addresses above 00FF 4, the extended addressing
mode is generally used.

9-102 | unir e

Procedure (Continued).

8. Figure 9-59 shows a program for adding a list of numbers. Because
the numbers are in addresses higher than 00FF,;, the extended
addressing mode is used. Load this program into the Trainer and
verify that you have loaded it properly.

9. Execute the program using the single-step mode. The first instruc-
tion sets the contents of accumulator Ato .

10. Examine the program counter and accumulator A after each in-
struction is executed. Each time an ADDA extended instruction is
executed, the program counter is advanced _____bytes.

11. Examine the contents of accumulator A after the final instruction is
executed. The number in accumulator Ais .

12. Refertoyourinstruction set summary card. How many MPU cycles
are required to execute this program? .

Discussion

The program adds the ten numbers giving the sum 55,,0r 37 . [t requires
51 MPU cycles. Notice that the program itself takes up 32,, bytes of
memory. The data (the ten numbers) use another 10,, bytes.

A repetitive program like this one is an excellent candidate for indexed
addressing. Let's see how the same job can be done using indexed
addressing.

Programming Experiments 9' 1 03

EDUCATION
————a
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0100 4F CLRA Clear accumulator A
0101 BB ADDA Add the first number
0102 01 01 which is at this
0103 20 20 address.
0104 BB ADDA Add the second number.
0105 01 01
0106 21 21
0107 BB ADDA Add the third number.
0108 01 01
0109 22 22
010A BB ADDA)
010B 01 01
010C 23 23
010D BB ADDA
010E 01 01
010F 24 24
0110 BB ADDA
0111 01 01
0112 25 25
0113 BB ADDA Continue until all numbers are
0114 01 01 added
0115 26 26 :
0116 BB ADDA
0117 01 01
0118 27 27
0119 BB ADDA
011A 01 01
011B 28 28
011C BB ADDA
011D 01 01
011E 29 29
011F 3E WAI Stop.
0120 01 01 First number.
0121 02 02 Second number.
0122 03 03 Third number.
0123 04 04
0124 05 05 .
0125 06 06 .
0126 07 07 .
0127 08 08
0128 09 09
0129 0A 0A Tenth number.
Figure 9-59

Adding a list of numbers using extended addressing.

HEATHKIT
CONTINUING
EDUCATION |

e

9-104

UNIT NINE

Procedure (Continued)

13. Figure 9-60 shows a program for adding the same list of numbers.
However it uses indexed addressing. Load this program into the
Trainer and verify that you have loaded it correctly.

14. Execute the program using the single-step mode. After each step,
record the contents of the program counter, accumulator A, and the
index register in Figure 9-61.

15. Compare the programs of Figures 9-59 and 9-60. Which requires
fewer instructions?

16. Refer to the instruction set summary card. How many machine
cycles are required to execute the program shown in Figure 9-59
. Compare this with the number of machine cycles re-

quired for the program in Figure 9-60.

Discussion

This example illustrates that when a repetitive task is to be done, indexed
addressing can save many bytes of memory. In many cases, indexed
addressing requires more MPU cycles and therefore, a longer time to
execute. Generally, time is of little importance compared to saving a
substantial number of memory bytes.

Let’s look at some other ways that indexed addressing is used.

HEX HEX MNEMONICS/ COMMENTS
ADDRESSES CONTENTS CONTENTS
0130 4F CLRA Clear accumulator A
0131 CE LDX# Load the index register
immediately
0132 01 01 with the address of
0133 20 20 the first number in the list.
0134 AB —> ADDA, X Add to accumulator A indexed
0135 00 00 with 00 offset.
0136 08 INX Increment index register.
0137 8C CPX# Compare the index register
immediately
0138 01 01 with one greater than the address
0139 2A 2A of the last number in the list.
013A 26 BNE If there is no match
013B 8 e '8 branch back to here.
013C 3E WAI Otherwise, halt.
Figure 9-60

Adding the list of numbers using indexed addressing.

HEATHKIT
CONTINUING

Programming Experiments 9" 1 05

STEP
NUMBER

CONTENTS AFTER EACH STEP

PC

ACCA

INDEX

R NI G WBRJWO N =

Figure 9-61
Record values here.

9-106

UNIT NINE

HEATHKIT
CONTINUING

DuC

ZEETIEI L s

e Y

Procedure (Continued)

17. Write a program that will clear memory locations 0120, through
01A0,. It should use indexed addressing. The program should

reside in the lower RAM addresses.

18. When you are sure your program is correct, load it into the ET-3400
Trainer. Verify that you loaded it correctly; then execute it using

the DO command.

19. Examine memory locations 0120,4 through 01A0,4. Each should be
cleared. Examine locations below 0120, and above 01A0,;. These

locations should not be cleared.

20. Debug your program if necessary and repeat steps 18 and 19 until

the desired results are obtained.

Discussion

Our solution to the problem is shown in Figure 9-62. Your solution may
be similar or quite different. If it achieves the proper result and requires
about the same number of bytes, then it is perfectly acceptable.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 CE LDX# Load index register immediately
with

0001 01 01 the address of the

0002 20 20 first location to be cleared.

0003 6F F—FCLR, X Clear the location whose

0004 00 00 address is indicated by the index
register.

0005 08 INX Increment the index register.

0006 8C CPX# Compare the number in the index

0007 01 01 register with one greater than

0008 Al A1l the address of the last location to be
cleared.

oocg 26 BNE If there is no match

000A F8 t——— F8 branch back to here.

000B 3E WAI Otherwise, stop.

Figure 9-62

Program for clearing addresses 0120, through 01A0,;.

Programming Experiments

We still have not demonstrated the full power of indexed addressing
because we have not yet used the offset capability. Let’s look at how the
offset capability can be used. Figure 9-63 shows three tables. The first two
tables contain signed numbers, the third is initially cleared. The entries
in the first two tables are to be added and the resulting sums are to be
placed in the third table. That is, the first entry in table 1 is to be added to
the first entry in table 2. The resulting sum is to be stored as the first entry
of table 3. The second entry in table 1 is to be added to the second entry in
table 2, forming the second entry in table 3; etc.

Procedure (Continued)

21. Enter the data shown in Figure 9-63 into the indicated addresses.

22. Write a program that will solve the problem described above.

23. Enter the program into the Trainer and execute it.

24. Examine addresses 0150,¢ through 015F 4 to verify that the pro-
gram performed properly.

25. If necessary, debug your program and try again.

Three tables.

TABLE 1 TABLE 2 TABLE 3
ADDRESS CONTENTS ADDRESS CONTENTS ADDRESS CONTENTS
0100 06 0110 FA 0150 00
0101 OF 0111 01 0151 00
0102 06 0112 1A 0152 00
0103 20 0113 10 0153 00
0104 2F 0114 11 0154 00
0105 00 0115 50 0155 00
0106 2F 0116 31 0156 00
0107 61 0117 OF 0157 00
0108 3E 0118 42 0158 00
0109 4F 0119 41 0159 00
010A 91 011A OF 015A 00
010B 9F 011B 11 015B 00
010C co 011C 00 015C 00
010D 84 011D 4C 015D 00
010E 70 011E 70 015E 00
010F E1 011F OF 015F 00
Figure 9-63

9-107

9-108

UNIT NINE

HEATHKIT

CONTINUING

Discussion

The solution to the problem is shown in Figure 9-64.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 CE LDX# Load index register with address
0001 01 01 of first entry
0002 00 00 in Table 1.
0003 Ab6 —1LDAA, X Load entry from Table 1 into
0004 00 00 accumulator A.
0005 AB ADDA, X Add the corresponding entry from
0006 10 10 Table 2.
0007 A7 STAA, X Store the result in the
0008 50 50 corresponding location in Table 3
0009 08 INX Increment the index register.
000A 8C CPX# Compare the number in the index
000B 01 01 register with one greater
000C 10 10 than the address of the last entry in
Table 1.
000D 26 BNE If there is no match,
000E F4 Y—— F4 branch to here.
000F 3E WAI Otherwise. stop.
Figure 9-64

Program for adding two tables.

Programming Experiments

- Experiment 8

ARITHMETIC OPERATIONS
OBJECTIVES:

To gain practice using the instruction set and registers of the
6800 MPU.

To demonstrate a fast method of performing multiplication.
To demonstrate multiple-precision arithmetic.

To demonstrate an algorithm for finding the square root of a
number.

To gain experience writing programs.

Introduction

In Unit 5, you were exposed to the full architecture and instruction set of
the 6800 microprocessor. In this experiment, you will use some of the
new-found capabilities of the microprocessor to solve some simple prob-_
lems.

Mathematical operations make excellent programming examples and at
the same time illustrate useful procedures. For these reasons, the prog-
rams developed in this experiment are concerned with arithmetic opera-
tions.

In an earlier unit, you learned that a computer can multiply by repeated
addition. However, this is a very slow method of multiplication when
large numbers are used.

A much faster method of multiplying involves a shifting-and-adding
process. To illustrate the procedure, consider the long hand method of
multiplying two 4-bit binary numbers. The procedure looks like this.

1101, « Multiplicand — 13,
1011, « Multiplier — 1140

1101 13
1101 13
0000 143,

1101
10001111, « Product _7

9-109

9'1 1 O UNIT NINE

HEATHKIT
CONTINUING
EDUCATION _

e

The decimal equivalents are shown for comparison purposes. The pro-
duct is formed by shifting and adding the multiplicand. Put in computer
terms, the procedure goes like this:

1. Clear the product.

2. Examine the multiplier. If it is 0, stop. Otherwise, go to 3.

3. Examine the LSB of the multiplier. If it is 1, add the multip-
licand to the product then go to 4. If it is a 0, go to 4 without
adding.

4. Shift the multiplicand to the left.

5. Shift the multiplier to the right so that the next bit becomes the
LSB.

6. Goto2.

Procedure
1. Write a program of any length that will perform multiplication in

the manner indicated. Here are some guidelines:

A.

B.

You may useany of the instructions discussed up to this point.

To keep the program simple, only unsigned 4-bit binary num-
bers are to be used for the multiplier and the multiplicand.

The final product should be in Accumulator A when the mul-
tiplication is finished.

The multiplier may be destroyed during the multiplication
process.

Assume that the multiplier and multiplicand are initially in
memory. That is, you should load them into memory along
with the program.

HEATHKIT
CONTINUING Programming Experiments 9-111

2. Trytowrite the program before you read further. If after 30 minutes,
you feel you are not making progress, go on to step 3.

3. If you feel you need help, read over the following hints and then
write the program.

A. The product should be formed in accumulator A.
B. The first step is to clear the product.

C. The multiplicand is shifted and added to Accumulator A.
Accumulator B is a good place to hold the multiplicand during
this process.

D. The multiplier can be tested for zero while still in memory by
using the TST instruction followed by the BEQ instruction.

E. A good way to test the LSB of the multiplier is to shift the
multiplier one bit to the right into the carry flag and then test
the carry flag with a BCC instruction.

4. Once your program is written, load it into the Trainer and run it.
Verify that it works for several different values of multipliers and
multiplicands. Debug your program as necessary.

HEATHKIT
CONTINUING
_EDUCATION

N

9-112

UNIT NINE

Discussion

Thereal test of your program is “Does it work?” If it works, then you have
successfully completed this part of the experiment. One solution to the
problem is shown in Figure 9-65. Compare your program with this one. If
you could not write a successful program, study this program carefully to
see how it handles each phase of the operation.

Obviously, this simple program has some serious drawbacks. The chief
one is that the product cannot exceed eight bits. Fortunately, the basic
procedure can be expanded so that much larger numbers can be handled.
The solution is to use two bytes for the product. This will allow products
up to 65,535,,. In this example, the multiplier will be restricted to eight
bits. However, the multiplicand can have up to 16 bits (two bytes) as long
as the product does not exceed 65,535,,. In an earlier unit, you learned
that multiple-precision numbers can be added by a 2-step operation. The
least significant (LS) bvte of one number is added to the LS byte of the
other. Then, the MS byte is added with carry to the MS byte of the other.
Keep this in mind as you write your program.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0010 4F CLRA Set the product to 0.

0011 D6 LDAB Load accumulator B with the

0012 22 22 multiplicand.

0013 7D — TST Test

0014 00 00 the

0015 23 23 multiplier.

0016 27 BEQ If it is 0, branch to the

0017 09 09 wait instruction.

0018 74 LSR Shift the LSB of the

0019 00 00 multiplier to the

001A 23 23 right into the carry flag.

001B 24 BCC If the carry flag is cleared

001C 01 01 skip the next instruction.

001D 1B ABA Add the multiplicand to the

product.

001E 58 ASLB Shift the multiplicand to the left.

001F 20 BRA Branch back and go through again.

0020 F2 e F2

0021 3E WAI Wait.

0022 05 Multiplicand

0023 03 Multiplier

Figure 9-65

Multiplying by shifting and adding.

HEATHKIT
CONTINUING

Programming Experiments

EDUCATION
———a——

The procedure for shifting a multiple-precision value will also come in
handy. To shift a 2-byte number to the left, a 2-step procedure like that
shown in Figure 9-66 can be used. First, the LS byte is shifted one place to
the left into the carry bit by using the ASL instruction. Next the MS byte is
rotated to the left. The result is that the 16-bit number has been shifted

one bit to the left.

Procedure (Continued)

5. Write a program that will multiply a double-precision multi-
plicand times an 8-bit multiplier. Assume that the double-
precision product is to be stored in memory locations 0000,; and
0001 6. The double-precision multiplicand is initially in addresses
0002 ,; and 0003 5. The 8-bit multiplier is in address 0004 .

6. Onceagain, you should try to write this program. If after 30 minutes
or so you are not making progress, read the hints given in step 7.

A [ofof1]1{ofof111] lojoj1{1]ojof1]1}
MS BYTE Us BYTE

— J
~—

16-81T MULTIPLE-PRECISION NUMBER

- ————

B (eTel T Tolol111] [6] el [olo[1 1110l
STEP l:c SHIFT THE LS BYTE TO

THE LEFT INTO THE
CARRY BIT (ASL)

C LoNTTemniTons] GiieRiilo]
C

STEP 2: ROTATE THE MS BYTE.

D Eg] (ol1f1fofof1]1]o] [oftTt]ofo]t]1]0]

— -/
—

THE RESULT

Figure 9-66

Shifting a multiple-precision number.

9-113

9-114

UNIT NINE

HEATHKIT
CONTINUING
_EDUCATION

SETnSERT T Es

Read over the following hints (if necessary) and try again.
A. [Initially clear both bytes of the product.
B. Test the multiplier for zero exactly as you did in the previous
program.
C. Test the LSB of the multiplier as you did in the previous
program.
D. When adding the multiplicand to the product, use the
multiple-precision add technique.
E. When shifting the multiplicand to the left, use the technique
shown in Figure 9-66.
8. Once your program is written, load it into the Trainer and verify
that it works properly. Debug the program as necessary.
Discussion

There are dozens of ways in which this program could be written. If your
program produces proper results, then you have been successful. One
solution to the problem is shown in Figure 9-67. Compare your program
with this one. If vou were unsuccessful in writing a program, study
Figure 9-67 very carefully until you understand the procedures involved.

Another problem that makes a good programming exercise is finding the
square root of a number. Writing the program is not too difficult once you
develop the proper algorithm. While there are many different ways to
find the square root of a number, the easiest method from the program-
mer’s point of view involves the subtraction of successive odd integers.
This method works because of the relationship between perfect squares.
Thefirst several perfect squaresare 0 =0,1>=1,22=4,32= 9,42 = 16, 52
= 25, etc. Notice:

The relationship between the numbers 0, 1, 4, 9, 16, 25, etc.

The difference between 0 and 1 is 1, the first odd integer.

The difference between 1 and 4 is 3, the second odd integer.

The difference between 4 and 9 is 5, the third odd integer: etc.

cm% Programming Experiments 9'1 1 5
— —_—aa—= .
- HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
— 0000 — — Product (LS byte)
0001 — —_ Product (MS byte)
0002 — — Multiplicand (LS byte)
0003 — — Multiplicand (MS byte)
— 0004 — — Multiplier
* * * Instructions start at address 0010
0010 7F CLR Clear the product.
- 0011 00 00
0012 00 00
0013 7F CLR
0014 00 00
- 0015 01 01
0016 7D TST Test the multiplier.
0017 00 00
_ 0018 04 04
0019 27 BEQ If the multiplier is 0, branch to
001A 19 19 the WAL instruction.
001B 74 LSR Otherwise, shift the right most
_ 001C 00 00 bit of the multiplier into
001D 04 04 the C flag.
001E 24 BCC If the C flag is 0 branch to
001F 0oC oC here.
- 0020 96 LDAA Otherwise, load the LS byte of
0021 00 00 the product into accumulator A.
0022 9B ADDA Then add the LS byte of the
0023 02 02 multiplicand.
- 0024 D6 LDAB Load the MS byte of the product
0025 01 01 into accumulator B.
0026 D9 ADCB Add (with carry) the MS byte of the
0027 03 03 multiplicand.
- 0028 97 STAA Store the contents of accumulator A
0029 00 00 as the LS byte of the product.
002A D7 STAB Store the contents of accumulator B
_ 002B 01 01 as the MS byte of the product.
002C 78 ASL Shift the LS byte of the
002D 00 00 multiplicand to the left.
002E 02 02
—_ 002F 79 ROL Rotate the MS byte of the
0030 00 00 multiplicand to the left.
0031 03 03
0032 20 BRA Repeat the process.
— 0033 E2 E2
0034 3E WAL Stop.
Figure 9-67

Program for multiplying a double-precision multiplicand by an 8-bit multiplier.

9-116

UNIT NINE

—_—
HEATHKIT
CONTINUING
EDUCATION

= =

This relationship gives us a simple method of finding the exact square
root of perfect squares and of approximating the square root of non-
perfect squares.

The procedure for finding the square root of a number looks like this:

Subtract successive odd integers (1, 3, 5, 7, 9, etc.) from the
number until the number is reduced to 0 or a negative value.

Count the number of subtractions required. The count is the
exact square root of the number if the number was a perfect
square. The count is the approximate square root if the number
was not a perfect square.

For example, let’s find the square root of 49,,.

49
-1

48
=3

45
-5
40
7
33
-9
24

Original Number.
Subtract the first odd integer.

Subtract the second odd integer.
Subtract the third odd integer.
Subtract the fourth odd integer.
Subtract the fifth odd integer.
Subtract the sixth odd integer.
Subtract the seventh odd integer.

Stop subtracting because the original
number has been reduced to 0.

We simply count the number of subtractions required.

Since 7 subtractions were required, the square root of 49 is 7.

Programming Experiments I 9'1 1 7

Procedure (Continued)

9.

10.

11.

12.

With pencil and paper, use the above algorithm to find the square
root of 81,o. Does the answer give the exact square? . Was
the result of the final subtraction 0?

With pencil and paper, use the above algorithm to find the square
root of 119,,. How many subtractions are required to reduce the
number to a negative value. Does this count approximate the square
root of 119,47

Write a program that uses the above algorithm to find or approxi-
mate the square root of any unsigned 8-bit number.

Load your program into the Trainer and run it. Verify that it works
for several different values.

Discussion

Our solution to the problem is shown in Figure 9-68. The number is
loaded into accumulator A, where it will be gradually reduced to a
negative value. The odd integer is maintained in accumulator B. Each
new odd integer is formed by incrementing twice. The SBA instruction is
used to subtract the odd integer from the number. The BCS instruction is

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 96 LDAA Load the number that is at

0001 OF oF this address into accumulator A.

0002 Cé LDAB# Load accumulator B with the

0003 01 01 first odd integer.

0004 10 SBA Subtract the odd integer from the
number.

0005 25 BCS If the carry is set, branch

0006 04 04 to here.

0007 5C INCB Otherwise, form the next higher
odd

0008 5C INCB integer by incrementing B twice.

0009 20 BRA Branch back

000A Fo F9 to here.

000B 54 LSRB Shift the odd integer to the right.

000C D7 STAB Store the answer at

000D 10 10 this address.

000E 3E WAI Wait.

000F — Number Number to be operated upon.

0010 — Answer Final answer appears here.

Figure 2-68
Square root subroutine

—_——
HEATHKIT
CONTINUING

DUCATION

9'1 1 8 l UNIT NINE

N

used to determine when the number goes negative (a borrow occurs at
that point). You could have used the BMI instruction but this would limit
the original number to a value below +128,,. A few bytes are saved by not
maintaining a separate count of the number of subtractions. Instead, the
final odd integer value is converted to the count. This is possible because
of the relationship between the odd integer value and the number of
subtractions. As the program is written, the final odd integer is always
one more than twice the number of subtractions. By shifting the final odd
integer to the right, the correct count is created.

Of course, any square root program that is limited to numbers below 256,,
is of limited use. However, this same technique can be applied to
multiple-precision numbers. Figure 9-69 shows a program that can find
or approximate the square root of numbers up to 16,385,,. Before you
study this program, try to write your own program to do this.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 96 LDAA Load accumulator A with the

0001 1A 1A LS byte of the number.

0002 D6 LDAB Load accumulator B with the

0003 19 19 MS byte of the number.

0004 7F CLR Clear

0005 00 00 the odd

0006 1B 1B integer.

0007 7C — INC Increment.

0008 00 00 the odd

0009 1B 1B integer.

000A 90 SUBA Subtract the odd

000B 1B 1B integer from the LS byte of the
number.

000C C2 SBCB# Take care of any borrow

000D 00 00 from the MS byte of the number.

000E 25 BCS If the carry is set, branch

000F 05 05 to here.

0010 7C INC Otherwise, form the next

0011 00 00 higher odd integer by

0012 1B 1B incrementing

0013 20 BRA and branching

0014 F2 2 to here.

0015 74 LSR Convert the odd integer to

0016 00 00 the answer by shifting

0017 1B 1B right.

0018 3E WAI Stop.

0019 — Number (MS) Number to be

001A — Number (LS) operated upon.

001B — 0dd integer Form the odd integer and the
answer here.

Figure 9-69

Routine for finding the square root of a double precision number.

CONTINUING Programming Experiments 9'1 19

Experiment 9

STACK OPERATIONS
OBJECTIVES:

To demonstrate the stack operations that occur automatically.
To demonstrate ways that the programmer can use the stack.

To demonstrate the break-point capability of the Trainer.

Introduction

As you learned in Unit 6, the stack is used by the MPU to perform some
automatic functions. When an interrupt occurs or a WAI is encountered,
the MPU pushes the contents of the program counter, index register,
accumulators, and condition codes on to the stack. We can easily verify
this.

9-120

HEATHKIT

UNIT NINE ;E?&:c“},{’g':
Procedure
1. Figure 9-70 shows a program for setting the MPU registers to a

known state. Examine the program and determine the hex contents
of the following registers immediately after the WAI is executed.

Condition Code Register
Accumulator B

Accumulator A —
Index Register

Program Counter

2. Load the program into the Trainer and verify that you loaded it
properly.
3. Execute the program using the DO command.
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 8E LDS# Load 0020 into
0001 00 00 the stack pointer
0002 20 20
0003 CE LDX# Load EEDD into the index register.
0004 EE EE
0005 DD DD
0006 Cé LDAB# Load BB into ACCB.
0907 BB BB
0008 86 LDAA# Load AA into ACCA.
0009 AA AA
000A 36 PSHA Push AA onto the stack.
000B 86 LDAA# Load CC into ACCA.
000C CC CC
000D 06 TAP Transfer CC into the condition
codes.
000E 32 PULA Pull AA from the stack.
000F 3E WAI Wait.
0010

Figure 9-70
This routine sets the contents of all MPU registers to known values.

HEATHKIT

CONTINUING . . -
EDUCATION Programming Experiments | 9 121
4. Examine the following memory locations and record their hex
contents.
Address Contents Register
001A
001B
001C
001D
001E —
001F
0020
5. Identify the register from which these numbers came.

6. Try to examine the contents of ACCA, ACCB, PC, SP, and INDEX
register. Do their contents agree with the number loaded there?

Discussion

When the WAI instruction is executed, the contents of the MPU registers
are pushed onto the stack. Since the stack pointer is initially at 0020, the
contents of the registers are stored as follows.

Address

001A
001B
001C
001D
001E
001F
0020

Contents

CC
BB
AA
EE
DD
00
10

Where it came from

Condition Codes
Accumulator B
Accumulator A

Index Register (high byte)
Index Register (low byte)
Program Counter (high byte)
Program Counter (low byte)

9-122

UNIT NINE

HEATHKIT

CONTINUING

_EDUCATION

——r

When you tried to examine the contents of ACCA, ACCB, SP, etc., you
found that their contents did not agree with what was loaded. The reason
for this apparent error is that the Trainer does not actually examine the
contents of theseregisters. Instead, it examines what is placed in the stack
by the WAI instruction. However, when the Trainer is reset, the monitor
program assumes that the stack starts at address 00D1. Since our program
moved the location of the stack, we can not use the ACCA, ACCB, PC, SP,
CC, or INDEX commands after changing the stack pointer and then
resetting the Trainer.

This demonstrates how the MPU uses the stack. A similar operation
occurs for the SWI instruction or when a hardware interrupt occurs. Of
course, the programmer can also use the stack.

Procedure (Continued)

7. Figure 9-71 shows a program that will clear memory locations 0001
through 001F. It then transfers a list of numbers to these addresses.
The numbers come from addresses 0151 through 016F.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS ADDRESS

0020 CE LDX# Load the index register

0021 00 00 with highest

0022 1F 1F address to be cleared.

0023 6F CLR, X Clear it.

0024 00 00

0025 09 DEX Decrement index register to next
lower address.

0026 26 BNE Finished? If not, go back and

0027 FB FB clear the indicated address.

0028 08 INX Set index register to first entry in
new list.

0029 8E LDS# Set the stack pointer to one less than

002A 01 01 the first entry in the old list.

002B 50 50

002C 32 — PULA Pull the entry from the old list.

002D 7 STAA X Store it in the new list.

002E 00 00

002F 08 INX Increment index register to next
entry in list.

0030 8C CPX# Finished?

0031 00 G0

0032 20 20

0033 26 BNE If not, go back and pull next entryv.

0034 F7 oo |7

0035 3E WAI Otherwise, wait.

Figure 9-71

Program for demonstrating stack operations and breakpoints.

_~

Programming Experiments

8. Load this program into the Trainer and verify that you loaded it
properly.

9. At address 0151 through 016F, load the numbers 01 through 1F 4,
respectively.

10. Execute the program using the DO command.

11. Examine addresses 0001 through 001F. They should contain the
numbers 01 through 1F, respectively.

Discussion

This illustrates how the stack can be used in conjunction with indexing to
move a list of numbers.

When this program is executed using the DO command, everything
happens so fast that it is impossible to see intermediate results. Of course,
you could use the single-step mode and examine the result produced by
every single instruction. But in many programs, this is a long, tedious
process. Therefore, the Trainer provides another way to examine prog-
rams. It allows us to set four different breakpoints in our program. The
Trainer will execute instructions at its normal speed until it reaches one
of these breakpoints. At that point, the Trainer will stop with the address
and op code of the next instruction displayed. While the Trainer is
stopped, you can examine and change the contents of any register or
memory location. When you are ready to resume, you depress the return
(RTT) key and the Trainer executes instructions at its normal speed until
the next breakpoint or a WAI instruction is encountered.

9-123

gl
9-124 | uniTNine _EDUCATION_

Procedure (Continued)

12. Verify that the program is still in memory.

13. Depress the RESET key. Do not depress RESET again és you per-
form the following steps. To do so, will erase any breakpoints that
you set.

14. Refertothe program listing in Figure 9-71. Let’s assume we wish to
stop and examine memory and the MPU registers just before the
BNE instruction at address 0026 is executed.

15. Depress the BR key. The display should be . ___ Br. The Trainer is
now ready to accept the first breakpoint address. Enter the address
at which the Trainer is to stop: 0026. The breakpoint is now en-
tered.

16. Without hitting RESET, depress the DO key. Enter the address of
the first instruction in the program: 0020.

17. Immediately, the display will show the address 0026 and op code
26 at which the breakpoint occurred.

18. Without hitting RESET, examine the contents of the index register.
It should now read 001E.

19. Depress the EXAM key and examine address 001F. It should now
be cleared.

20. Notice that you can examine the contents of any MPU register or
memory location from this breakpoint mode.

21. When you areready for the program to resume, depress the RTI key
once. Again, the display will read 002626 because the MPU is back
at the same breakpoint on the second pass through the first loop.

22. Examine the index register again. It should now read 001D.
Examine location 001E and verify that it has been cleared.

:oucA"#'o"uc Programming Experiments 9‘1 25

23. Theloop will be repeated 31,, times. On the 32" pass, the program
will escape the loop.

24. Before you go further, set a second breakpoint at the INX instruc-
tion. Do this by depressing the BR key and entering the address of
the instruction (0028).

25. Depress the RTI key again. Notice that the program is still stopping
at the first breakpoint. It will continue to do so until it escapes the
first loop.

26. Youhavenow pushed the RTI key three times. Repeatedly push the
RTI key until the display changes to 0028 08. The RTI key should
have been depressed a total of 32,, times, counting the first three
times.

27. The program is now waiting at the second break point.

28. To demonstrate a point, let’s set two additional break points.

29. Depress the BR key and enter address 0029. This sets the third break
point at the LDS# instruction.

30. Depress the BR key again and enter address 0033. This sets the
fourth break point at the last BNE instruction.

31. The Trainer will accept only four breakpoints. We have now
reached this limit. Depress the BR key again in an attempt to enter a
fifth breakpoint. Notice that the word “FULL!” appears on the
display.

32. Depress the RTI key so that the Trainer resumes program execution.
It should stop at the third breakpoint.

33. Depress the RTI key again. The program should stop at the fourth
breakpoint. Notice that the program is again in a loop. On each pass
through the loop, the program will stop at this fourth breakpoint.

34. Analyze the operation of the program by examining the pertinent
registers and memory locations on each pass through the loop.

9-126

UNIT NINE

HEATHKIT
CONTINUING
EDUCATION

Semrrmsea e o e

e

Discussion

The breakpoint capability of the Trainer can be a powerful aid in writing,
analyzing and debugging a program. It allows us to stop at four distinct
points in the program. Here are some tips to remember when using this
capability:

1.

A maximum of four breakpoints can be used.

These may be entered all at once or during a previous break-
point pause.

The RESET key erases all breakpoints.

The contents of the address at which the breakpoint is set must
be an op code.

Programming Experiments 9"1 27

Experiment 10

SUBROUTINES
OBJECTIVES:

To demonstrate the use of subroutines.

To demonstrate that the monitor program of the ET-3400
Trainer contains some useful subroutines that can be called
when needed.

To gain experience writing programs.

Introduction

Most of the subroutines that you will develop and use in this experiment
deal with lighting the displays on the Trainer. For this reason, we will
begin by discussing how the displays are accessed.

The ET-3400 Microprocessor Trainer has six hexadecimal displays. Each
display contains eight light-emitting diodes (LEDs) arranged as shown in
Figure 9-72. Each LED is given two addresses. The addresses for the
left-most display are shown. To light a particular LED, we simply store an
odd number at the proper address. An odd number is used because the
LED responds to a 1 in bit 0 of the byte that is stored. To turn an LED off,
we store an even number at the proper address. The following procedure
will demonstrate this.

C16E
Ccl66
——

Cl69 Ccl60
Cl6t c168 Cl65
—3

C16A cieo c16c
c162 Ci64
— O Cl6F

Cclés cl167
Ccie63

Figure 9-72
Addresses of the various segments in the left LED display.

HEATHKIT

9-128| unT NN ;‘3@2)&%"5
Procedure >
1. Write a program that will halt after storing an odd number (such as
01) at address C167 .
2. Load the program into the Trainer and execute it using the DO

command. The microprocessor should halt with the decimal point
of the left-most display lit. —

3. Notice that the LED remains lit until it is deliberately turned off.

Discussion

To form characters, the LED’s in the display must be turned on in combi-
nation. For example, to form the letter ““A”, the segments at addresses
C162, C161, C166, C165, C164, and C160 must be turned on. -

Procedure (Continued)

4. Write a program that will halt after storing an odd number (such as
01) at the six addresses listed above.

5. Load the program into the Trainer and execute it using the DO
command. The microprocessor should halt with the letter A in the
left-most display.

Discussion _

Your program probably took this form:

LDAA # 01

STAA C162

STAA C161

STAA C166 -
WAI

While this approach works, the program would have to be rewritten for
each new character. What is needed is a program that will form many —
characters. One approach is to store characters as 8-bit character bytes.
Since there are eight LED’s in each display, each bit of the character byte __
can be assigned to a different LED segment. Figure 9-73A shows how

HEATHKIT
CONTINUING

Programming Experiments 9"1 29

61 cl65
¢l |C160|

C162| |C164

CHARACTER BYTE
O THT1JoT1]1 [1}~=For LeTrer "A"
ccccccee
1111111
6666666
§543 210

Figure 9-73

Assigning the bits of the character byte.
each bit in a character byte is assigned to each segment of the display. To
light a corresponding LED, the proper bit in the character byte must be 1.
For example, Figure 9-73B shows the character byte for the letter A. To
form this letter, all display segments except C163 and C167 must be lit.

Therefore, a 1 is placed in the character byte at all bits except the two that
correspond to these addresses.

The display responds only to bit 0 of the character byte. To make each
segment bit appear in turn at bit 0, the character byte must be shifted to
the right. After each shift, the contents of the character byte must be
stored at the address whose corresponding bit is now at bit 0. The
procedure is:

1. Store the contents of the character byte at C160.

2. Shift the character byte to the right.

3. Store it at C161.

4. Shift it to the right again.

5. Store it at C162.

Etc.

9-130

UNIT NINE

HEATHKIT
CONTINUING

A program that will do this is shown in Figure 9-74.

Procedure (Continued)

6. Load the program into the Trainer and verify that you loaded it
correctly.
7. Execute the program using the DO command. The left-most digit
should display the letter A.
8. The character byte is at address 0001. Change this byte to 47 .
9. Execute the program again using the DO command. What letter
appears in the display?
10. Change the character byte so that the letter H is displayed. What
character byte is required?
HEX HEX MNEMONIC/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 86 LDAA# Load accumulator A immediate
with the
0001 77 77 character byte.
0002 CE LDX# Load the index register immediate
with
0003 C1 C1 the address.
0004 60 60 of the left display.
0005 A7 — STAA, X Store the character byte at the
0006 00 00 address indicated by the index
register.
0007 44 LSRA Shift the character bit to the right.
0008 08 INX Advance index register to the
address of the next segment.
0009 8C CPX Compare index register with one
greater
000A C1 C1 than the address of the
000B 68 68 last segment.
000C 26 BNE If no match occurs branch
000D F7 | F7 back to here.
000E 3E WAI Otherwise, stop.

Figure 9-74

Program for lighting a display.

HEATHKIT
CONTINUING
EDUCATION

=T

11.

12.

13.

14.

15.

Programming Experiments 9'1 31

Change the character byte to 79, Execute the program. What
character is displayed?

Refer to Figure 9-75. This figure shows the addresses of the LED’s in
each of the six displays. You have seen that the left display has an
address of C16X¢. The X stands for some number between 0 and F,
depending on which segment of that display we wish to use. The
next display to the right has an address of C15X,; etc.

Now return to the program shown in Figure 9-74. Addresses 0003
and 0004 contain the address of the affected display. By changing
this address, we can move the character to a different display.
Actually since all display addresses start with C1, we need only
change the number at address 0004.

Change the byte at 0004 to 50,s. Change the byte at 000B,¢ to 58.
Execute the program using the DO command. The character should
appear in the second display from the left.

Change the byte at 0004 to 10,5 and the byte at 000B to 18,¢. Execute
the program using the DO command. The character should appear
in the right-most display.

Discussion

It has probably occurred to you that the monitor program must have a
subroutine that performs this same function. Fortunately, this subroutine
is written in such a way that we can use it. It is called OUTCH for OUTput
CHaracter. It starts at address FE3 A ;. We can call this subroutine anytime
we like by using the JSR instruction. This subroutine assumes that the
character byte is in accumulator A.

C16X C15X C1ax C13X C12X Cnx

£.6 £, 6 E.6 E.6 E, 6 E.6

Figure 9-75
Addresses of the various display segments.

HEATHKIT
9-132 | uniT NINE CONTINUING

Procedure

16. Load the program shown in Figure 9-76. Verify that you loaded it
properly.

17. Execute the program using the DO command. What message does
the program write?

18. Notice that each character is written in a different display. Thus,
the subroutine QUTCH automatically changes the address to that of
the next display after each character is written.

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 86 LDAA# Load accumulator A immediate
with the

0001 37 37 character byte for the letter H.
0002 BD JSR Jump to subroutine
0003 FE FE OUTCH
0004 3A 3A
0005 86 LDAA# Load ACCA with
0006 4F 4F next character byte.
0007 BD JSR
0008 FE FE Display it.
0009 3A 3A
000A 86 LDAA# Load next character.
000B OE OE
000C BD JSR
000D FE FE Display it.
000E 3A 3A
000F 86 LDAA# Load next character.
0010 67 67
0011 BD JSR

012 FE FE Display it.
0013 3A 3A
0014 3E WAI Stop.

Figure 9-76

This program uses the OUTCH subroutine in the monitor program to display a message.

EDUCATION Programming Experiments 9'1 33

" Discussion

The monitor program writes several messages of its own. Examples are:
ACCA, ACCB, CPU UP, and FULL! Thus, the monitor has a subroutine
that can be used to write messages. It is called OUTSTR for OUTput a
STRing of characters. Its starting address is at FE52,,. There is a special
convention for calling this subroutine. The JSR FE52 ¢ instruction must
be followed immediately by the character bytes that make up the mes-
sage. Up to six characters can be displayed. The last character must have
the decimal point lit. After the message is displayed, control is returned
to the instruction immediately following the last character.

Procedure (Continued)

19. Load the program shown in Figure 9-77 into the Trainer and verify
that you loaded it properly.

20. Executethe program using the DO command. What message does it
display?

21. Modify the program so that it displays HELLO.

HEX HEX MNEMONIC/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 BD JSR Jump to the subroutine that
0001 FE FE will display the following message.
0002 52 52
0003 37 37 H
0004 4F 4F E
0005 OE OE L
0006 E7 E7 P. <=Decimal point must be lit in
last character.
0007 3E WAI Then stop.
Figure 9-77

The OUTSTR subroutine in the monitor is used to display a message.

9-134 lUNIT NINE

HEATHKIT

CONTINUING
_EDUCATION
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 BD JSR
0001 FE FE Cal OQUTSTR.
0002 52 52
0003 76 76 N
0004 FE FE O. =— Decimal point lit (last
character).
0005 BD JSR
0006 FE FE Call OUTSTR again.
0007 52 52
0008 5E 5E G
0009 FE FE O. <«— Decimal point lit (last
character).
000A 3E WAI Then stop.

Figure 9-78
OUTSTR is called twice.

22. The program shown in Figure 9-78 calls the OUTSTR subroutine
twice. Load this program into the Trainer.

23. Execute it using the DO command. What message is displayed?

24. Notice that the second message (GO.) is written to the right of the
first. Thus, subroutine CUTSTR does not reset the display to the
left for the second message.

25. Rewrite the program so that two blank displays appear between
NO. and GO.

HEATHKIT

Programming Experments 9‘1 35

Discussion

When displaying long messages such as: “HELLO CAN I HELP YOU?”,
the display must be given no more than six characters at a time. Also, a
short delay must be placed between the various parts of the message. You
can achieve a delay by loading the index register with FFFF and decre-
menting it to 0000. You can achieve an additional delay by using either
accumulator in conjunction with the index register. We can write a
display subroutine and call it between each part of the message.

Also, because we are using the same displays over again for each part of
the message, each new word should start on the left. The subroutine
called OUTSTR has an alternate entry point at address FD8C,s called
OUTST]. The calling convention for this subroutine is the same as that for
OUTSTR. However, each new message starts in the left-most display.

Procedure (Continued)

26. Load the program shown in Figure 9-79. Verify that you loaded it
properly. :

27. Execute the program using the DO command. What message is
displayed?

28. Change the number in address 003C,q, 003E,¢, and 003F,g.

29. Execute the program using the DO command. What affect does this
have?

30. Write a program of your own that will display “LOAD 2 IS BAD.”

HEATHKIT

- NTIN
g 136 UNIT NINE CE?D_I_JC UI}G

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 BD JSR Call Delay Subroutine

0001 00 00

0002 3B 3B

0003 BD JSR Call OUTST]

0004 FD FD

0005 8C 8C

0006 37 37 H

0007 F 4F E

0008 OE OE L

0009 OE OE L

000A FE FE 0.

000B BD JSR Call Delay Subroutine

000C 00 00

000D 3B 3B

000E BD JSR Call OUTST] again

000F FD FD

0010 8C 8C

0011 4E 4E C

0012 77 77 A

0013 76 76 N

0014 00 00 blank

0015 BO Bo L.

0016 BD JSR Call Delay Subroutine

0017 00 00

0018 3B 3B

0019 BD JSR Call OUTST] again

001A FD FD

001B 8C 8C

001C 37 37 H

001D 4F 4F E

001E OE OE L

001F 67 67 P

0020 80 80 .

0021 BD JSR Call Delay Subroutine

0022 00 00

0023 3B 3B

0024 BD JSR Call SUTSTJ again

0025 FD FD

0026 8C 8C

0027 3B 3B Y

0028 7E 7E @]

0029 3E 3E U

002A 00 00 blank

002B 80 80 .

002C BD JSR Call Delay Subroutine

002D 00 00

002E 3B 3B

002F BD JSR Call OUTST] again

0030 FD FD

0031 8C 8C

0032 00 00 blank

0033 00 00 blank

0034 60 00 blank

0035 00 00 blank

0036 00 00 blank

0037 80 80 .

0038 7E JMP Do it all again

e cmme wm Tt s 'euee ey SeEn omee S—— -Cﬂnt,d.—_————————

mﬂﬂ%ﬁ Programming Experiments
s m— e a—— —————-r—cont’d. . SN g S S SN D SN =
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0039 00 00
003A 00 00
003B 86 LDA A#)
003C 02 02
003D CE LDX#
003E 00 00
003F 00 00
0040 09 DEX S
0041 26 BNE Delay Subroutine
0042 FD FD
0043 4A DECA
0044 26 BNE
0045 F7 F7
0046 39 RTS /

Figure 9-79
This program makes extensive use of the subroutine call.

Discussion

The monitor program in the Trainer contains some other useful sub-
routines. These are outlined in the manual for the ET-3400 Microproces-
sor Trainer. Two of the most useful are REDIS and OUTBYT.

OUTBYT is a subroutine that displays the contents of accumulator A as
two hex digits. Its address is FE20,,. When this subroutine is called for the
first time, the two left displays are used. If it is called again without being
reset, the two center displays are used. The third time, the two right
displays are used.

The display can be reset to the left by calling the REDIS subroutine. This
subroutine is located in address FCBC,¢. f OUTBYT is called after REDIS
is called, the two left displays will be used.

9-137

9'1 38 UNIT NINE

HEATHKIT

CONTINUING

DUCATION

Procedure (Continued)

31. Load the program shown in Figure 9-80. Verify that you loaded it
properly.
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 4F CLRA Clear accumulator A
0001 BD — JSR
0002 FE FE Call QUTBYT
0003 20 20
0004 BD JSR
0005 00 00 Call Delay Subroutine
0006 OE 0E
0007 1C INCA Increment accumulator A
0008 BD JSR
0009 FC FC Call REDIS
000A BC BC
000B 7E JMP
000C 00 00 Do it again.
000D 01 01
000E CE LDX#
000F FF FF
0010 FF . FF
0011 09 DEX Delay Subroutine.
0012 26 ! BNE
0013 FD FD
0014 39 RTS
Figure 9-80
Using the QOUTBYT and REDIS subroutines.
32. Execute the program using the DO command.
33. Which digits are used by the display?
34. Notice that the JSR instruction at address 0008 calls the subroutine
that resets the display to the left.
35. To illustrate why this is necessary, let's see what happens when

this important step is omitted. Change the contents of locations
0008, 0009, and 000A to 01. This replaces the JSR instruction with
three NOPs.

HEATHKIT
CONTINUING

Programming Experiments

EDUCATION

"

36. Execute the program using the DO command. Notice that, without
calling the REDIS subroutine, the display advances to the right and
is lost after the third time though the loop.

37. Restore the program to its original state. How can the count be
speeded up?

Discussion

The speed of the count can be varied by changing the contents of address-
es 000F and 0010. It probably has occurred to you that the trainer could be
turned into a digital clock. In the following procedure, you will develop a
program that will do this.

Procedure

38.

39.

40.

Write a program that will count seconds from 00 to 99,,. The
seconds count should be maintained in the two left-most displays.
It should count as the above program did, but in decimal instead of
hexadecimal.

If you have problems, remember that the DAA instruction can be
used to convert the addition of BCD numbers to a BCD sum. How-
ever, the DAA instruction works only if preceeded immediately by
an ADDA or ADCA instruction.

Load your program into the Trainer and execute it using the DO
command.

9-139

9-140

UNIT NINE

HEATHKIT

CONTINUING

_EDUCATIO

Discussion

One solution is shown in Figure 9-81. Carefully study this program. This
routine counts the seconds in decimal. However in a real digital clock,

the seconds reset to 00 after 59,, rather than after 99,,.

There are two one-second delay sub-routines listed in the following
experiments. You must use the one that matches the clock frequency of
your ET-3400 Trainer.

The original Trainer has a clock frequency of approximately 500
kHz. If your Trainer has not been modified, you must use the ‘“‘Slow
Clock One-Second Delay Subroutine.”

If your Trainer has been modified for use with the Heathkit Memory
1/0O Accessory ETA-3400, it has a clock frequency of 1 MHz. In this
case, you must use the “Fast Clock One-Second Delay Subroutine.”

HEX HEX MNEMONICS/
ADDRESS | CONTENTS | CONTENTS COMMENTS

0000 4F CLRA Clear seconds.
0001 BD JSR
0002 FE FE Call OUTBYT
0003 20 20
0004 BD JSR
0005 00 00 Call Delay subroutine
0006 10 10
0007 8B ADDA# Increment seconds
0008 01 01
0009 19 DAA Make it decimal
000A BD JSR
000B FC FC Call REDIS
000C BC BC
000D 7E JMP
000E 00 00 Do it all again.
000F 01 01

* 0010 CE LDX#
0011 Cs Cs Slow Clock
0012 00 00 One-Second
0013 09 DEX Delay Subroutine
0014 26 BNE
0015 FD FD
0016 39 RTS

L————-h——-——.-ﬂ—-cont’d. - o ——— v —— ——

HEATHKIT
CONTINUING

Programming Experiments 9"1 41

o CON'd. ==

I S GEND GEND GEED G TEED SIS I G Y D GEED GEED EEEE N W S S
HEX HEX MNEMONICS/

ADDRESS CONTENTS | CONTENTS COMMENTS
0010 36 PSHA
0011 86 LDAA#
0012 02 02
0013 CE LDX#
0014 F3 F3
0015 80 80 Fast Clock
0016 09 DEX LOne-Second
0017 26 BNE
0018 FD FD Delay Subroutine
0019 4A DECA
001A 26 BNE
001B F7 F7
001C 32 PULA
001D 39 RTS

*Use either the Fast Clock or the Slow Clock One-Second Delay Subroutine.

Figure 9-81
This routine counts seconds from 00 to 99.

Procedure (Continued)

41. Modify your program (or the one in this Experiment) so that it
displays seconds from 00 to 59 and then returns to 00 and starts
over again.

42. Load your program into the Trainer and execute it using the DO
command.

43. Debug your program if necessary until it performs properly.

Discussion

One solution is shown in Figure 9-82. The seconds count is compared to
60 each time it is incremented. When it reaches 60, it is reset to 00.

The next step is toadd a minutes count. This can be done by incrementing
a decimal number each time the seconds count “rolls over” from 59 to 00.
The decimal number is then displayed as minutes.

9-142

HEATHKIT

UNIT NINE :CEOD'JQA}!'IION'?
HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 Ceé LDAB# Load number for comparison
0001 60 60
0002 4F > CLRA Clear seconds.
0003 BD - JSR
0004 FE FE Call OUTBYT
0005 20 20
0006 BD JSR
0007 00 00 Call Delay Subroutine
0008 14 14
0009 BD JSR
000A FC FC Call REDIS
000B BC BC
000C 8B ADDA# Increment seconds.
000D 01 01
000E 19 DAA Make it decimal
000F 11 CBA Time to clear seconds
0010 7 BEQ Yes.
0011 FoO +>— FO
0012 20 BRA No.
0013 EF ‘e EF
* 0014 CE LDX#
0015 & Cs Slow Clock
0016 00 00 One-Second
0017 09 DEX Delay Subroutine
0018 26 BNE
0019 FD FD
001A 39 RTS
0014 36 PSHA
0015 86 LDAA#
0016 02 02
0017 CE LDX #
0018 3 F3
0019 80 80 Fast Clock
001A 09 DEX One-Second
001B 26 BNE ?Dela_v Subroutine
001C FD FD
001D 4A DECA
001E 2 BNE
001F 7 F7
0020 32 PULA
0021 39 RTS

*Use either the Fast Clock or the Slow Clock One-Second Delay Subroutine.

Figure 9-82

This routine counts seconds from 00 to 39.

HEATHKIT
CONTINUING
EDUCATION

Programming Experiments

—_———

Procedure (Continued)

44, Write a program that will display minutes and seconds properly.
The minutes should be displayed in the two left displays; the
seconds in the two center displays. Like the seconds, the minutes
should return to 00 after 59.

45. Load your program and execute it.

46. Debug your program as necessary.

Discussion

A solution is shown in Figure 9-83. Your approach may be more
straightforward, but may require more memory.

The final step is to include the hours display.

Procedure (Continued)

47. Modify your program so that it displays hours, minutes and sec-
onds.

48. Load your program and execute it.

49. Debug your program as necessary.

A solution is shown in Figure 9-84. This program evolved over a period of
time and is extremely compact. It is virtually impossible for a beginning
programmer to write a program this compact on the first try. Your pro-
gram may require substantially more memory, but the important thing is:
does it work?

While you can “fine tune” the slow-clock period by changing the num-
bers in addresses 0004 and 0005, the clock will never be very accurate
because it is temperature sensitive. The fast clock period is much more
accurate because the oscillator is crystal controlled. You can fine tune it
by changing the numbers in addresses 003A and 003B. In a later experi-
ment, you will rectify this problem and produce an extremely accurate
clock.

9-143

9"'1 44 UNIT NINE

HEATHKIT

CONTINUING
EDUCATION

Nt

~— = cont’d.= ==

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS
0000 00 00 Reserved for seconds
0001 00 00 Reserved for minutes
* 0002 CE (36) | »1DX# (PSHA)
0003 C5 (BD) Cs (JSR) Slow Clock (call Fast Clock
0004 00 (00) 00 (00) One-Second One-Second
0005 09 (2F) DEX {2F) delay. Delay)
0006 26 (32) BNE (PULA)
0007 FD (01) FD (NOP)
0008 Cé6 LDAB# L.oad number for comparison.
0009 60 60
000A 0D SEC Set carry bit.
000B 8D BSR Branch to subroutine to
000C 11 11 increment seconds.
000D 8D BSR Branch to the same subroutine
000E oF OF to increment minutes.
000F BD JSR
0010 FC FC Call REDIS
0011 BC BC
0012 96 LDAA Load minutes
0013 01 01
0014 BD JSR
0015 FE FE Call OUTBYT to
0016 20 20 display minutes.
0017 96 LDAA Load seconds
0018 00 00
0019 BD JSR Call OUTBYT to
001A FE FE display seconds
001B 20 20
001C 20 BRA Do it all again.
001D E4 L E4
001E Ab LDAA, X Load seconds (or minutes) into A.
001F 00 00
0020 89 ADCA# Increment if necessary
0021 00 00
0022 19 DAA Adjust to decimal z
0023 11 CBA Time to clear? =
0024 26 BNE No. 3
0025 01 01 =
0026 4F CLRA Yes. z
0027 A7 STAA, X Store seconds (or minutes) ;
0028 00 00 3
0029 08 INX g
002A 07 TPA =
002B 88 EORA# Complement carry bit
002C 01 01
002D 06 TAP
002E 39 RTS
O —

I o —————

HEATHKIT
CONTINUING

Programming Experiments

EDUCATION

'——__‘———-—T-—Cont’d. . I NS WD SN SN GEES GELE GEED S SN
002F (86) (IDAA#) |)
0030 (02) (02)
0031 (CE) (I DX #)
0032 (F3) (F3)
0033 (80) (80)
0034 (09) (DEX) Fast Clock
0035 (26) (BNE) One-Second
0036 (FD) (FD) Delay Subroutine
0037 (4A) (DECA)
0038 (26) (BNE)
0039 (F7) (F7)
003A (39) (RTS))

*Numbers in parenthesis are for Fast Clock One-Second Delay only.

Figure 9-83

Routine for displaying minutes and seconds.

9-145

9“1 46 lUNIT NINE

HEATHKIT

CONTINUING
EDUCATION _

X

_————A

HEX HEX MNEMONICS/ COMMENTS
ADDRESS CONTENTS CONTENTS

0000 00 00 Reserved for seconds

0001 00 00 Reserved for minutes

0002 00 ; 00 Reserved for hours

* 0003 CE (36) LD)E# {PSHA)

0004 C5 (BD) C5 (JSR) Slow Clock (Call Fast Clock

0005 00 (00) 00 (00) One-Second One-Second

0006 09 (37) DEX (37) Dela Delay)

0007 26 (32) { BNE(PULA) y y

0008 FD (01) FD (NOP)

0009 Cé I.LDAB# Minutes and seconds will

000A 60 60 be compared with sixty.

000B oD SEC Prepare to increment seconds

000C 8D BSR Go to subroutine that will

000D 11 11 increment seconds.

000E 8D BSR Go to same subroutine. It will
increment

000F OF 0F Minutes if necessary.

0010 Cé [LDAB# Hours will be compared

0011 12 12 with twelve.

0012 8D BSR Co to same subroutine. It will
increment

0013 0B 0B hours if necessary.

0014 BD JSR

0015 FC I'C Call REDIS

0016 BC BC

0017 8D BSR Call display subroutine to display

0018 17 i7 hours.

0019 8D BSR Call display subroutine to display

001A 15 15 minutes.

001B 8D BSR Call display subroutine to display

001C 13 13 seconds.

001D 20 BRA Do it all again.

001E E4 E4

001F Ab [DAAX l.0ad seconds {or minutes or hoursj.

0020 00 00

0021 89 ADCA# Increment if necessary.

0022 00 00

0023 19 GAA Adjust to decimal. .

0024 11 CBA Time to clear? E

0025 25 BCS No. E

0026 01 01 =

0027 iF CIRA Yes. 7

0028 A7 STAA. X Store seconds (or minutes or hours}. =

0029 00 00 z

002A 08 INX Point index register at minutes (or Z’
hours). z

0028 ' TPA

002C 88 EORA# Complement carry bit

002D 01 01

002E 06 TAP

002F 3 RTS

0030 09 DEX Point index register at hours .
{or minutes or seconds) é

0031 A6 iDAAXN l.oad hours {or minutes or seconds) E

0032 00 00 =

0033 TE ISR Display hours {or minutes or z
seconds) >

0034 FE FE =

0035 20 20 =

0036 39 RTS -

HEATHKIT
CONTINUING

*Numbers in parentheses are for Fast Clock One-Second Delay only.

Figure 9-84

Twelve-hour clock program

EDUCATION Programming Experiments

T eSS oS G GEED GEge GEED Gmhl Gkl MR GEES GE GENN SMES SN NS SDALS S GRS GENE GARED GUURY SN IS Sy

0037 (86) (1DAA#) |)

0038 (02) (02)

0039 (CE) (1.DX #)

003A (F3) (F3)

003B (80) (80) Fast Clock

003C (09) (DEX) One-Second

003D (26) (BNE) rDelay Subroutine

003E (FD) (FD)

003F (4A) (DECA)

0040 (286) (BNE)

0041 (F7) (F7)

0042 (39) (RTS) /

9-147

