HEATHKIT
CONTINUING
_EDUCATION

4

Individual Learning
Program

MICROPROCESSORS

Unit 10
INTERFACING EXPERIMENTS
EE-3401
HEATH COMPANY ;EEEEE?;"}:&E;

BENTON HARBOR, MICHIGAN 49022 Printed in the United States of America

10-2 l UNIT TEN

_EDUCATION

CONTENTS
Introductiont 10-3
Experiment 1 Memory Circuits 10-4
Experiment 2 Clock...........ooiiiiiiiii i 10-19
Experiment 3 Address Decoding 10-25
Experiment 4 Data Output oot 10-39
Experiment 5 Data Input.................... oo, 10-53
Experiment 6 Introduction To The Peripheral

Interface Adapter (PIA) 10-65
Experiment 7 Audio Outputccceo... 10-71
Experiment 8 Key Matrix And Parallel-To-Serial

Conversionccooiiiiiiniiiiininiinn, 10-83
Experiment 9 Digital-To-Analog And Analog-To-

Digital Conversioncovvvee.... 10-96
Schematiccciiiiiiiiii i e 10-111

Interfacing Experiments

Unit 10

INTERFACING EXPERIMENTS

INTRODUCTION

This Unit contains nine interfacing experiments that are to be assembled
and run on the Microprocessor Trainer. Most of the circuit parts for these
experiments are supplied with this course. The remaining parts were part
of the Trainer Kit.

You will be instructed to perform these experiments at the end of Units 7
and 8. Do not confuse them with the programming experiments in Unit 9.
When you complete an experiment, you will be directed to the next
experiment, or back to the Unit Activity Guide of the unit that directed
you to the experiment.

If your Trainer is Model Number ET-3400, and has been modified for use
with the Heathkit Memory I/O Accessory, Model ETA-3400, disconnect
the 40-pin plug that connects the Trainer to the Memory 1/O Accessory.
Then reinstall the 2112 RAM IC’s at IC-14 through IC-17 before starting
the experiments in this unit.

If your Trainer is model number ET-3400A, and has been modified for use
with the Heathkit Memory I/O Accessory, disconnect the 40-pin plug that
connects the Trainer to the Memory I/O Accessory. Then reinstall the
2114 RAM IC’s at IC14 and IC15 before starting the experiments in this
unit.

10-3

10-4 Lumr TEN

Experiment 1
MEMORY CIRCUITS

OBJECTIVES:

Show how memory circuits can be connected to a microprocessor.
Demonstrate timing requirements when using memory circuits.
Show how data is stored and read from memory circuits.

Demonstrate an elementary memory test to ensure proper, reliable
operation.

Introduction

In this experiment, you will construct a memory on the large connector
block of the Microprocessor Trainer and interface the circuit with the
Trainer circuits.

The initial sections of the experiment will examine memory and its
characteristics. The remaining experiment section will interface the
memory with the microprocessor and its support circuits. This program
and all remaining hardware experiment programs will use a computer
print-out listing. A detailed explanation of how to read the listing will be
given later in the experiment.

TRAINER POWER REVIEW

With the Trainer plugged in and the Power switch off, the display LED’s
and the +5, +12, and —12 volt connector blocks are disconnected from
Trainer power. The single LED next to the Power switch indicates this
condition. Whenever you make connections between the Trainer and the
large connector block, always switch the power off. This will not disturb
any program stored in the Trainer. If you must remove or install a
component in the Trainer circuits, such as an IC, remove the power plug
from the wall receptacle.

EDUCATION Interfacing Experiments I 10‘5

Material Required

1 Microprocessor Trainer

1 1000 ohm, 1/4-watt, 10% resistor

1 Pushbutton switch (#1)

1 7400 integrated circuit (443-1)

1 74126 integrated circuit (443-717)

1 74LS30 integrated circuit (443-732)

1 74LS27 integrated circuit (443-800)
Hookup wire (22 gauge, solid)

1 IC puller tool From Trainer

Parts Package
Hookup wire (22 gauge, solid)

ADDITIONAL MATERIAL REQUIRED (TRAINER ET-3400A)

2 2112-2 IC's (Heath Number 443-721)

10-6

UNIT TEN o JNG
Bt lacd
Procedure
1. Turnthe Trainer power off, then unplug your Trainer from its wall
receptacle.

2. Insert the 74126 (443-717) and 7400 (443-1) integrated circuits
(IC’s) into the large connector block as shown in Figure 10-1.
Always install an IC in the block with pin 1 toward the left.

NOTE: If you are using Trainer model number ET-3400, perform step 3. If
your Trainer is an ET-3400A, perform step 3A. All other steps of this
procedure are common to both Trainer types, except where indicated.

3. Using the IC puller tool, remove the 2112 (443-721) IC from its
socket at location [C17. (Observe the precautions described in Unit
9 for MOS devices.) Then insert the IC into the large connector
block as shown in Figure 10-1. This IC will be reinstalled in the
ET-3400 Trainer in a later experiment.

3A. Locatea2112-2 IC (Heath number 443-721) that was supplied with
this course. Notice that this IC is packed in conductive foam.

NQOTE: These IC’s are rugged, reliable components. However, normal
static electricity discharged from your body through an IC pin to an object
can damage the IC. Install these IC’s without interruption as follows:

® Remove the IC from its package with both hands.

® Holdthe IC with one hand and straighten any bent pins with the
other hand.

® Insert the IC into the large connector block as shown in Figure
10-1.

Interfacing Experimemii 10'6-1

Install the pushbutton switch at the location shown in Figure 10-1.
Be sure to press straight down when you insert the switch leads —

they are fragile.

5. Using the 22 gauge, solid hookup wire, interconnect the IC’s and
switch as shown in Figure 10-1. Install the 1000 ohm, 1/4-watt, 10%

resistor at this time also.

ooooooooooo0o0oono
0Oo0000C0000000000
goooogo00oocO0000C
goopoococoooooocooc
s oooo | oooogooooooogoogy
< ‘) |
BINARY DATA Jnonnunuounnnunncln
< cNDO QOGO Dooooooooooooooocla—r
ooog FECEI ———— a20000000 000 N0 o (@O0000
[=]=§=]=] Qooo LUbudduduwuUuwuuuuuwenoooao
00000000000 0000000000000
/

f
120000 I
12 0000 I

Figure 10-1

Part A of wire interconnect diagram.

tmmllllru'lo" interfacing Experiments
—_—————
o||lio
alltio|lllo
o ljioi{}|o
o
gooooooooOoOOo00CcO0O0000000
pocooooo0c0000ao0c0c00oao
goco@ooooooooonac
ooocoooaoococogaoac||i o O
ooocoonoocoogooongc] }
BINARY DATA guTuTTs nooogaooooooaGc]|le
! T:Sﬁﬁtsgnunuauccuuunnnuuuuucunnnnnnuucucoc
0 B00000000000000000000000000000000000DOGBA0
0o0o0c0c0000000000000
gooooocooococooaocoang

Refer to Figure 10-2 and install hookup wire as shown. Now com-
pare your circuit with the circuit shown in Figure 10-3. Figures
10-1 and 10-2 are supplied to familiarize you with the proper
wiring technique. The remaining hardware experiments will show

only the circuit diagram.

Connect your Trainer line cord plug to a wall receptacle, and
switch the circuit power on. The four data LED’s may or may not be

randomly lit.

LED

CONNECTOR

o
o
gLocks |0
.

Fess©O-

10 Llu

9
1/0) /07 /03 1/04

134 — -
#CE ic-3 RIW
2112

A7 Ag A5 Ag A3 Ay Ay Ag
7065 [is|y 2 P

[

v

SWITCH CONNECTOR

BINARY DATA ' YY)

noaoa
BLOCKS >

Moo sl—e

0005 T3

+5

GND

|BDU

Figure 10-3

Figure 10-2

Part B of wire interconnect diagram.

Circuit diagram of the first part of the

memory experiment.

10-7

10-8

UNIT TEN

NOTE: The slide switch assembly in the lower left corner of the Trainer
(Figure 10-4) is used to control address and data information in this
experiment. The first four switches (0 thru 3) control data, while the next
four (4 thru 7) control the address. Each group is arranged in a binary
—— sequence with the least significant bits at 0 (data) and 4 (address). The
[physical position of each switch indicates a logic level; up for a logic 1

m %‘fl E and down for a logic 0.

DATA LIGHTS

Im' [gGca JJcND
= ===3.,——_ The pushbutton switch mounted on the large connector block functions
_]2—— as the memory Read/Write switch. In its out (off) position, the memory is
wEE< e in the read mode, and the four data LED’s will display data stored in
3! Zow 3 ; memory. When the R/W switch is pressed, the memory goes to the write
F2-F - mode, and the value stored in the four data switches is read into memory.

P 10.4 The four data LED’s immediately display the new memory data.
igure 10-

Binary data switch functions.

ADDRESS DATA
HEX BINARY BINARY

(o] [oToJo]o] [ooTo]o]
(0] [oJoToT1] [oJo]oT]
(2] [eTonTo] [eJoTTo]
(3] [oo* T3] [oJoN 1]
(4] [eTToTo] [oT1]oTo]
(5] [e[1Tol1] [o[ToTT]
(6] [ehThTo] o T]o]
7] D] D]
(8] [1ToJoJo] [1ToToTo]
(s] OToTo[1] (iToTo]1]
(a] GToTTo] [iTolTo0]
(8] OToh 1] Do TY]
(€ G[1TeTe] 0T o]0
(o] 0D Teln] T IoTN]
(€] 0D Te] 0 TTo]
phvpiy ph g

8. Set the four address switches to 0000,, and the four data switches to
0000,. Then press the R/W switch. If any of the data LED’s were
previously lit, they should now be out. This indicates that 0000, is
now stored at address 0000,.

9. Now select address 0001, and set the data switches to 0001,. The
display will show a random value produced at power-on. Press the
R/W switch. The data lights will show 0001,, which is now stored
in memory at address 0001,.

10. Refer to Figure 10-5 and use the slide switch assembly to load the
remaining 14,, address locations (2 thru 15,,) with the data
specified. NOTE: To write data in memory; select the address,
select the data value, and load the data by pressing the R/W switch.

11. With the address switches, select memory location 9,,. The dis-
played datais_ _ _ _,. Since the 16 memory locations contain a data
value that matches the address, the displayed value should equal
9,s. Randomly select various memory locations. As each location is
selected, the stored data will be displayed.

Figure 10-5
First data table for memory
storage experiment.

Interfacing Experiments

10-9

12. Refer to Figure 10-6 and enter the specified data for each address
location.

13. Randomly select a number of memory locations and note the stored
data. You probably recognized the relationship between address
and data while you entered the data. If not, do you now? The data
corresponds to the 1's complement of the address. This circuit is
being used as a look-up table. By selecting an address, you can
retrieve data previously stored away. Similarly, this circuit can be
used for code conversion. Using a binary sequence (as in Figures
10-5 and 10-6) for addressing, a value code can be stored to repre-
sent the address (for example, the Gray code as described in Unit 1).
Thus, to find the Gray code value of 8,4, simply examine memory
location 8 4. A second memory circuit can then be used toreconvert
the code by using the Gray code values (in this example) for address
locations, and the binary values for data.

Figure 10-6

Second data table for memory storage

experiment.

Discussion

In this section of the experiment, you used a 256 x 4-bit RAM integrated
circuit. An IC of this type will have eight address pins and four [/O
(input/output) pins through which a 4-bit data word may be stored
(written) or read. The direction of 1/O flow is determined by the R/W
(read/write) pin logic level. A logic 1 on this pin defines the four 1/O pins
as outputs, thus placing the IC in its read mode. A logic 0 on the R/W pin
defines the four I/O pins as inputs, thus placing theIC in its write mode. A
chip enable (CE) pin allows the IC to be enabled or disabled without
disturbing its memory contents. This feature will be more meaningful in
a later experiment.

You also used a 3-state buffer array (four buffers) with the memory circuit.
This is necessary to isolate the data switches when the memory is in its
read mode. Each buffer acts as an open circuit at its output pin unless a
logic 1 is applied to each enable (E) pin. As shown in Figure 10-3, when
the R/W switch is pressed, the memory R/W line goes low (write mode),
and the enable lines to the buffers go high (through NAND gate IC-2A).
Switch data is coupled through the buffers and is written into memory.
The LED’s display the data value. When the R/W switch is released, the
memory returns to its read mode and the buffers return to their open
circuit condition. The LED’s now display the data value stored in mem-
ory.

ADDRESS DATA
HEX BINARY BINARY

[o] [oJoloTo] 0T T1]
[} [oJoTel1]) LT To0]
(2] [oJoT1To] [T ToT 1]
[oTo[nT1] [T]of0]
(4] [e]iToTo] [TonT1]
(olnfol1] [i]o]1]0]
(e] [o]7T1T0] [iToJo]T]

foln [1]1] (i fojojo]
(e] (0ToToTo] (o177]T]
(s] GToToT] [onT1T0]
(a] OJoTTo] [oT1oTT]
(8] OJoln 1] [oTnToTo]
(c] 0D Tolo] [oToTnTh]

(o] O JoI] [oJoT o]
(e] 0O [hTo} [oToJoT]
(F] O] [oToToTol

10-10 l UNIT TEN

L
'
,
{l
DATA x :
]
]
1
)
1

ADDRESS_(DX
DATA @ x @

R/W LINE \ /

Figure 10-7
Memory write timing diagram.

Writing into memory requires careful timing. Normally the address and
data lines must be stable while the R/W line is pulsed low, as shown in
Figure 10-7, part A. Actually, the data is stored as soon as the R/W line
reaches a logic 0 level. If the data changes value while the R/W line is low,
the memory will store the new data. In like manner, if the address
changes with the R/W line low, the same data will be stored at the new
address.

Figure 10-7 part B shows an extreme example of improper timing. At
address condition 1, data 4 will be stored. Then data 4 will be stored at
address 2. However, while at address 2, data changes to condition 5.
Therefore, data 5 is now stored at address 2. Finally, data 5 is stored at
address condition 3.

Procedure (continued)

14. Turn the Trainer power off, then pull the power plug from the wall
receptacle.

NOTE: If you are using Trainer model number ET-3400, perform step 15.
For model number ET-3400A, perform step 15A. All other steps of this
procedure are common to both trainers, except where indicated.

15. Using the IC puller tool, remove memory IC2112 (443-721) from its
socket at location 1C16. (Observe the necessary precautions for
handling MOS devices.) Then insert the IC into the large connector
block, next to the other memory IC.

15A. Locate the second IC 2112 (443-721) that was supplied with this
course. (Observe the necessary precautions for handling MOS de-
vices.) Then insert the IC into the large connector block, next to the
other memory IC.

Interfacing Experiments

16A. Using hookup wire, rewire the connector block IC’s and Trainer to

16B.

17.

18.

19.

form the circuit shown in Figure 10-8. Notice that most of the
circuitry is identical to the first circuit you built. You may find it
helpful to trace each on the Figure with a red pencil, as you install
the wire.

Connect your Trainer line cord plug to a wall receptacle, and
switch the circuit power on.

The address, data, and R/W switches function as before. Refer to
Figure 10-9 and enter the data shown, beginning at address 0000,.
NOTE: Data LEDO will be lit for the first eight address locations.
Data LED1 will be lit for the last eight address locations.

Data LED’s 0 and 1 indicate which memory IC is enabled. LEDO
lights for IC4 and LED1 lights for IC3. Examine a number of ad-
dresses between 0000, and 0111,. Notice which memory IC is
enabled. The data stored should match the address. Now examine a
number of addresses between 1000, and 1111,. Notice which mem-
ory IC is enabled. The data stored should be the 1’s complement of
the address.

Switch the Trainer power off for a few seconds, then switch it back
on. Examine a number of memory locations. Have their contents
been altered? Do data LED’s 0 and 1 still indicate which memory IC
is enabled?

10-10.1

Interfacing Experiments l 10"1 1

>
-
>
~—
m
<
wv

O,

008LYLYLLYY
(Y 7 & 2
alfai|a]|lal][a]lo .
a|lal{a{|a}|a
g aollatllalialla CONNECTOR
alim wilolia BLOCKS
L
7 6 |5 12 3 2 Jt o
r T 13004
of 10} 11 12~ g 10 12} /4w, 10% 3 6 8 11
1101 1/03 1/03 1/04 y . 1101 1/0; 1/03 1104 . >—l~v—< 5V l 3 1c-1
— T E £
1c-4 RINE— o c.28 0 - Ic-3 RIW 1C-2A 1054y 4&5 ZYE X
5 2] 7
2112 o L 5| 7400 13 2112 b-2] 7400 ”E "
A7Ag As Ag A3 Ay A) A A7 Ag As Ag A3 AjAlAg (B £ 126
7 f,I 5|15‘1 21 3 4 70 6] 5yl 1] 2f 3 4 RIW 2 S 9 12
1) SWITCH
v 3
7 6 15 ja 3 2[| -
BINARY DATA YT T T
swncuach)CNgSscmR cooa cooo
ADDRESS DATA
=N -
E 4] 14] o] 16|
3 1C-1 1c-2 ic-3| {ic-a
Figure 10-8 781264 | 7400 | 2112 {2112
o 443-| laa3-1| | a43-| | 443-
Circuit diagram of the second part of 717 721 121
e T 3 3
the memory experiment. ||3 a UF{
ADDRESS DATA

Discussion

Refer to Figure 10-8 and note how data LED’s 0 and 1 are connected. They
indicate which memory IC is enabled by the MSB address switch. Since
IC3 and IC4 share address lines 4, 5, and 6, the chip enable (CE) pins
determine which IC is enabled for data transfer. The most significant
address line is connected to pin 13 of IC4 and its complement is con-
nected to pin 13 of IC3. Therefore, when bit 4 (switch 7) of the address is
logic 0, IC4 is enabled; and when bit 4 is logic 1, IC3 is enabled.

When either memory IC is disabled, through pin CE, stored data remains
unaffected. The 3-state output pins go to an open circuit condition. This
insures that only one memory IC on the common address lines will be
active for data transfer.

RAM, unlike ROM, has a volatile memory. Therefore, when power is lost
(even momentarily) data stored in memory is no longer valid. However,
data can be reentered into memory and retained as long as power remains
on.

HEX BINARY BINARY
(0] [oTolo]o] [o]oTo]0]
(1] [oToJo]1] [oToJol]
[oToT1To] [eTof To]
[oTo[1 1] [oTol1T1]
tof1jojo} [ol1]oj0]
[olvjo[1] [o]1]o]1]
(6] [oInT1To] [ol1T070]
(7] e 1] e I}
(e] (ToToTo] e[11}
(s] [JoToT1] [e1T1To0]
(Al [(ToT0T0] (oI o]
(8] 0 To[1T1] (0T ToTo]
[€]]aTofo] [oTo[1]
(0] TaTeT1] [oToTiT0]
[€] Dol [oToToTT]
(7] 000 T] [oToToTo]

Figure 10-9

Third data table for memory storage

experiment.

10-12 l UNIT TEN ‘9“{‘,‘“:,':'“

Procedure (continued)

20. Switch the Trainer power off.

21. Removethe hookup wires (save them), pushbutton switch, resistor,
and IC1 and IC2, used in the previous experiment, from the Trainer.

22. Refer to Figure 10-10, install the IC’'s, and wire the circuit to the
Trainer. Caution: When you install the IC’s, leave an extra set of
holes between IC2 and IC3. You will be replacing the 14-pin IC2
with a 16-pin IC at a later time.

23. The memory circuit you have wired now interfaces with the mi-
croprocessor and will allow data transfer from address 0200
through 02FF . Use the Trainer Examine function and randomly
select an address in this memory block. Change the data at this
location to AA . Press the FWD key, then press the BACK key. Is
the memory content still AA¢?

15)
~TMA D2] 11
1Hz NMT —AALT 4 1C-5A
| r r 7400 | 2 ¢
oooo|{oooao ‘
ooog|losoao D7D405D, | C30,0;0q
Line-d 92 VMAL L g oooag DOODO| TRAINER DATA
1 [T1X) P9 W8] INTERFACE BLOCKS
Lz e I l
] 5
! 6
2 g 1c-1 8
i
1] 12 11} 10 9 12 11 10 9
2 1702 1703 1/0; 1]0; 1104 1103 1705 110}
R P
4 Ic-3 Ic-4
2112 g ® 13 g 2112
A7 Ag As Ag A3 Ay Ay Ag A7 Ag As Ag A3 Ay A Ag
I EEREER IEEEEEEE
] | | l(_I_H *
seea ses sse B8 & rRAINER ADDRESS
Qaoaoa Qgooag goaoao OO0ODO| {NTERFACE BLOCKS
‘15‘\'\13"12 ALy, Aghg A7AgAsA, SLYLILYY
14
soC®
— 4 14] 14
1c-1] {ic-2 1c-5
Figure 10-10 7a1s300 fraLsey 7400
e . a43- | | 443- 443-1
Circuit diagram of the third part of the GND 132 800

]

-

memory experiment. l oaa g

Interfacing Experiments I 10'1 3_

24. Examine address 0300,,. Now change the contents to AA,s. Press
the FWD key, then press the BACK key. Is the memory content still
AAg.

The data you entered in the previous step was retained because of
the memory circuit you wired into the Trainer. The data at location
0300,; was not retained because no memory exists for that location.

25. Examine address 0200,; and change its contents to AA.

26. Without switching the Trainer power off, interchange the Dg and D,
wires at the Data Interface Block, as shown in Figure 10-11.

27. Press the FWD key, then press the BACK key. The indicated data is
now 6A . By interchanging the sixth and seventh data bits, 1010
1010, became 0110 1010,. The memory IC still retains the orginal
data you programmed. To see this relationship, return the two
wires to their orginal position. Since the display has “latched in”
the previous data, press the FWD key and then the BACK key. The
correct memory contents are now displayed.

Discussion

IC1 and IC2 shown in Figure 10-10, form the address decoder. The inputs
of this decoder are connected to address lines Ag thru A ;, ¢2, and VMA.

To enable the two memory IC’s, the CE pins must be at logic 0. This will
occur when all of the inputs to IC1 are at logic 1. Therefore, only address
0000 0010, (02,5) will decode properly. This is the high order byte of a
16-bit address. #, and VMA will go to a logic 1 sometime during a proper
address cycle. When this occurs, the output of IC1 will go to alogic 0, and
memory will be enabled.

The low order byte of the 16-bit address determines the memory location
in IC3 and IC4 where data will be stored or retrieved. Since each memory
IC can store only four bits of data, two IC’s are connected in parallel. Thus,
256,, 8-bit data words can be stored from address 0200, thru 02FF .
Therr .ore, in the circuit shown in Figure 10-10, address bits A, thru A,
select the memory location and address bits Ag thru A ,; select the specific
memory IC’s to be enabled.

Data flow direction is determined by the R/W line. When this line is at
logic 0, the MPU can write into memory. When this line is at logic 1, the
MPU can read from memory.

Figure 10-11
Physical manipulation of data by in-

terchanging data lines.

10-14

UNIT TEN

HEATHKIT
NUI
EDUCATION

. . . B1-
Block diagram of typical microproces- DATA DIRECTION 0200,
BUS

sor system using bus extenders. RIW EXTENDER TO 02FFy¢

Figure 10-12

=i
————r

In small microprocessor systems (less than ten devices), the MPU and its
support IC's can be connected directly together. However, when more
circuits are added to the address and data busses, the MPU can no longer
supply the necessary current.

To solve this problem, bus extenders (buffers) are connected between the
MPU and most of the surrounding IC’s. These supply the necessary drive.
Figure 10-12 illustrates a typical circuit.

The address bus extender is uni-directional. That is, it passes a signal in
only one direction. It consists of 16 individual buffer drivers; one for each
address line.

Unlike address signals, data signals can originate at the MPU or in
peripheral circuits such as memory. Therefore, bi-directional bus exten-
ders are required. Each data bus extender consists of two 3-state buffer
drivers wired back-to-back as shown in Inset 2 of Figure 10-12. The
3-state feature in this case is complementary. That is, when the read
enable (RE) control line is low, the read buffer is enabled, and when the
RE line is high, the write buffer is enabled. Remember, the terms read and
write are always expressed in relation to the MPU.

INSET #1

Ag I: Ag

UNI- TO ALL
ADDRESS DIRECTION JADDRESS ADDRESS
BUS BUS BUS DECODING
EXTENDER CIRCUITS

0

MPU

MEMORY
8US 8US

e] RIW

MEMORY
000014
TO 01FFyq

PR/

Interfacing Experiments

You may wonder why an RE line is required in addition to the R/W line. It
wouldn’t be, if all the memory and any other bus operated devices were
electrically connected outside of the bus extenders. However, in most
systems, there are some circuits connected directly to the MPU, with
additional circuits connected to bus extenders. Thus, the RE control is
necessary for valid logic transfer.

During aread cycle, data is transferred to the MPU from memory or other
support devices. When a memory location “down line” from the bus
extender is addressed, the bus extender will receive an RE logic 0 signal,
which enables the buffer in the “read” direction. All devices not address-
ed, before or after the bus extender, will be 3-stated into their open circuit
configuration. In this case, the R/W control could have been inverted and
connected to the bus extender RE input. However, if memory “up line”
from the bus extender (MPU side} is addressed, the bus extender must
remain in its “write” configuration. It could not do this if the inverted
R/W control line was used.

Since all of the devices “down line” are 3-stated to their open-circuit
condition, the input to the ““read” buffer of the bus extender would be
undefined and its output would assume a logic level (usually logic 1 for
TTL gates) that could interfere with data transfer. By using an RE control
signal not totally defined by the R/W control, the bus extender can be
forced into its “write” state and prevent any ‘“down-line” interference.

The circuit you constructed from Figure 10-10 used the CE and R/W
signals to produce the necessary RE signal. This is then used to control
the bus extender where it interfaces the data connector blocks with the
MPU data bus in the Trainer. As shown in Figure 10-10, the CE signal
from pin 8 of IC1 is inverted by IC5A. Thus, when memory IC’s 3 and 4 are
enabled and the R/W line is logic 1, the output of IC5B is logic 0, which
enables the bus extender “read” buffer. If IC’s 3 and 4 are not enabled, the
RE line remains high regardless of R/W level, and the bus extender
remains in its ‘“write” condition.

The final section of this experiment will examine a method for determin-
ing the validity of memory. First however, you will learn to read an
assembled program listing. This format will be used from now on in these
experiments. What you will see is a photocopy of each program as it is
assembled and printed by a computer. This serves two purposes: First, it
insures that no typographical errors have been introduced during manual
reproduction. Second, it gives you an opportunity to become familiar
with the format used by most periodicals and books for program listing.

10-15

10-16

UNIT TEN

HEATHKIT
CONTINUING

Y S

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012

———
0000

0000
0003
0003
0007
0008
Q00K
ooon

——LINE NUMBER
— INSTRUCTION ADDRESS

CE
86
A7
08
8c
26
3E

——

0200
AG
00

0300
Fg

All of the following programs were assembled with a Motorola EXOR-
ciser® and printed with a Digital Equipment Corporation decwriter I1I®.
As shown in Figure 10-13, each listing can be divided into two main
sections. The right half contains the assembly language program just as
the programmer typed it into the computer. The left half of the listing was
produced (assembled) from the data in the right half of the listing. This
half contains the machine language code that must be entered into the
Microprocessor Trainer.

The program listing contains eight columns of information. A brief ex-
planation of each follows.

® Column 1 is a sequential list of numbers produced only as a
reference to identify listing lines.

OP CODE
—VALUE OF OPERAND OR EFFECTIVE ADDRESS

LABEL | ‘
— OPERATOR-INSTRUCTION OR DIRECTIVE MNEMONIC”

|—OPERAND OR EFFECTIVE ADDRESS

P B S COMMENT
NAM MEMLOAL
XREV 0.2
OFT NOF
ORG 0 _ ~ -
LI $$0200 FIRST ADDRESS LOADED
LDA & #345 CONTENTS TO RE STORED
NXTMEM STA A O»X STORE IT
INX NEXT ADDRESS
CFX $£$0300 LAST ADDRESS YET?
ENE NXTMEM GET NEXT ADDRESS
WAI JOE IS DONE
ENI!

MACHINE LANGUAGE ~—| —> ASSEMBLY LANGUAGE

Figure 10-13
Assembled program for loading data
into a block of memory.

CONTINUING Interfacing Experiments 1 0‘1 7

® Column 2 lists each instruction address. Depending on the
number of bytes in each instruction, these addresses can be
sequential, or spaced 2 or 3 addresses apart. In Figure 10-13,
line 00005 contains instruction address 0000, while line 00006
contains instruction address 0003. This occurred because op
code CE required two address bytes 02 and 00 to complete the
instruction.

® Column 3 lists instruction op codes only. This accounts for the
— variable address spacing in column 2.

® Column 4 contains the operand or effective address. Thus, this
- column may have none, one, or two bytes of data, depending on
the op code.

® Column 5 begins the assembly language portion of the program
listing. It contains any labels used to assemble the program. If
the label is preceded by an asterisk (*), the following informa-
tion is a comment only, and not used for program assembly. In
Figure 10-13, line 00002 contains the label “*REV 0.2”. Thisis a
comment that states this is a program that has been revised two
times. It serves only as a handy reference for the programmer to
keep track of his program status.

= If the label is not preceded by an asterisk, the label becomes a
way of finding an address in a branch or jump routine. Line
00010 contains the instruction BNE followed by NXTMEM.

— This says, branch if not equal to the address defined by the label
NXTMEM. Thus, the program will jump to the address at line
00007, where the label NXTMEM is located.

® Column 6 lists the operator-instruction for the program, or the
directive mnemonic used by the assembler.

® (Column 7 lists the operand or the effective address of the in-
struction or directive.

® Column 8 contains any comments the programmer wishes to
make. These are usually a description of the program steps to
- aid in understanding the program.

More information on assembly programming is available in Motorola’s
- ““M6800 Microprocessor Applications Manual” (Heath # EDP-244). For

the purpose of this section, we will be primarily concerned with machine
-~ coding, columns 2, 3, and 4.

10-18

UNIT TEN

HEATHKIT

CONTINUING
_EDUCATION
ano

Procedure (continued)

28. Refer to Figure 10-13 and enter the program beginning at address
0000.

29. Examine your program beginning at address 0000,,. The addresses
and their contents should agree with the list in Figure 10-14.

30. Press RESET, then press DO and enter address 0000,¢. The display
will go dark, indicating the microprocessor is working.

31. Press RESET and examine a number of memory locations between
0200, and 02FF 4. The contents will be A5,¢. You should be able to
single-step through each memory location and verify that it func-
tions properly by observing that A5, is stored at each address. By
changing the contents at address 0004, to a different value, say
5A6, and executing the program you can verify that none of the
memory defaulted to the original value, A5.

32. This completes the experiment. However, DO NOT disconnect the
memory circuit from the Trainer. You will use this circuit in Exper-
iment 3. Proceed to Experiment 2.

ADDRESS|DATA

0000| CE

0001 02

0002| 00

0003| 86

0004| A5

0005| A7

. 0006{ 00
Data listing for program in Figure 0008| 8C
10-13. 0009]| 03
000A| 00

0008B| 26

oooc| F8

000D| 3E

Interfacing Experiments

Experiment 2
CLOCK

OBJECTIVES:

Show how the interrupt request can be implemented.

Show how an external timing signal can synchronize the MPU.

Introduction

In this experiment, you will improve the clock program you developed
earlier. A line frequency (60 Hz) signal provides timing accuracy to the
clock. The line frequency signal is connected to the interrupt request
(IRQ) input. This makes the clock extremely accurate.

Materials Required

1 ET-3400 Microprocessor Trainer (with hard-wired circuit).

1 6" hookup wire.

Procedure

Programming Notes:

® Begin program (listed in Figure 10-15) at address 00034 (line
00009) and enter data CE. The first three address locations are
reserved for clock display time and will be entered after the
main program has been entered.

® As you load the program, notice that no address is specified at
lines 00008, 00015, 00023, 00028, 00041, 00047, and 00052.
These lines are used for comments or assembler directives. Just
follow the program address and ignore these lines.

® Line 00049 contains an ORG (originate) statement which is an
assembler directive. Therefore, you can ignore the address
specified. The next instruction you must enter goes to memory
location 00F7,5. Use the EXAM and CHAN keys to enter the
opcode.

10:19

10-20 | uniTTeN

HEATHKIT

CONTINUING

00001
¢0002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
20016
00017
00018
20019
20020
00021
00022
00023
00024
00025
00026
Q00027
00028
20029
00030
00031
00032
00033
00034
00035
00036
00037
20038
00039
00040
00041
00042
00043
00044
00045
00046
Q00047
00048
00049
00050
00051
00052

0000
0000
0001
0002

0003
0006

0007
0009

000A
O0O0R

ooon
000F
0010
0012
0014
0016
0018

O01R
oo1m
001F
0021

0023
0025
0027
0028
0029
002k
oo02C
002E
002F
0030
0032
0033

0034
00335
0037
0039
003k

003E
0041
00F7
00F7

AND

X REV 0.6

61
TIME TICKING OFF
60 FULSES YET?

WAITING

GO BRACK & WAIT AGAIN!
UFDATE

SIXTY SECONDS,SIXTY MINUTES
ALWAYS INCREMENT SECONLS
INCREMENT SECONDS

INCREMENT MINUTES IF NEEDED
TWELVE HOUR CLOCK

INCREMENT HOURS

RESET DISFLAYS

FRINT HOURSyMINUTES SECONDS
no IT Akl AGAIN

DATA WORD INTO A
INCREMENT IF NECESSARY
FIX TO DECIMAL

TIME TO CLEART?

NO

COMFLEMENT CARRY RIT

FOINT X AT RYTE
WHAT’S IN HOURS?
IF IT*S ZERO

MONITOR ROUTINE
MAKE IT ONE
RESUME

NAM CLOCK-2
XL INE ACCURACY CLOCK FROGRA
oFT NOF
ORG 0
0001 SECOND RME 1
0001 MINUTE RME 1
0001 HOURS RME 1
XX INTERRUFT HANDLING
CE 003D TIMFAS LDX $$003D
09 ONE4OT DEX
27 04 REQ TIMEUF
OE CLT
3E WAI
20 F9 ERA ONE&OT
x%x INCR ONE SECOND
Cé6 60 TIMEUF LDA E #$60
on SEC
80 11 ESR INCR
8l OF RSK INCR
Cé 13 LDA B %413
80 O ESR INCR
EI FCEC JSK REDIS
FCEC REDIS EQU $FCRC
8n 17 BSK FRINT
8IN 15 ESF FRINT
8I 13 ESR FRINT
20 EO ERA TIMFAS
xX INCR - INCREMENT SUEBROUTINE
A6 00 INCR LDA A OsX
89 00 ALIC A %0
19 DAA
11 CRA
25 01 ECS INC1
AF CLR A
a7 00 INCL STA A OsX
08 INX
07 TEA
88 01 EOR A #1
06 TAF
39 RTS
*X FRINT - FRINT HEX EYTES
09 FRINT DEX
96 02 LIA A $02
27 05 EEQ ADIJUST
A6 00 CONTIN LDA' A 05X
7E FE20 JMF QUTERYT
FE20 OUTRYT EQU $FE20
7C 0002 ADJUST INC HOURS
20 Fé ERA CONTIN
ORG $O0F 7
3K RTI
END

Figure 10-15
Assembled program for real-time

clock.

Interfacing Experiments

Procedure (continued)

1.

If you have not done so, switch the Trainer on. Then enter the
program listed in Figure 10-15.

Refer to Figure 10-16 and install the 6” hookup wire between the
LINE socket and the IRQ socket. Do not disturb the other circuit you
have wired into the Trainer.

Your clock is ready to run. Determine at what time you wish to start
the clock; then enter the seconds at address 00004, the minutes at
address 00016, and the hours at address 0002 5. For example, to set
the clock for 9:25:30, enter the following:

Address Data
0000 30 (seconds)
0001 25 (minutes)
0002 09 (hours)

Press RESET, then press DO and then enter the first 3 digits of the
starting address (0 0 0 _,5). As the time you have set approaches,
enter the fourth digit (3), but do not release the key. At precisely the
correct time, release the ““3"" key. The display will momentarily go
dark, and then show the correct time, with the seconds digit updat-
ing at a 1-second rate.

L 1pde~

rrre
rere

L
'%1LLL§’ [
L

€

[N
[N Y
o
SS— [N LLt
[
_IiLLLL]
i A~

cLL
LhlubibLLbiiLet
=TT

S —

3) Figure 10-16
Clock interrupt request line connection.

10-21

10-22

UNIT TEN

HEATHKIT
CONTINUING
EDUCATION

e

Figure 10-17
Line frequency signal processing.

Discussion

Although it appears to be a simple process to connect the LINE signal to
the IRQ input of the microprocessor, AC line voltage had to be reduced in
amplitude and processed into a waveform acceptable to the microproces-
sor. The circuit used by the Trainer is shown in Figure 10-17A. It uses a
comparator with positive feedback to process the AC signal.

A sample of AC line signal is coupled through current limiting resistors
R1 and R2 to the negative input of the comparator. Diode D1 limits the
negative swing of the AC signal to approximately 0.7 volts. The com-
parator tracks the AC input and switches logic levels at its output, at the
same rate. Positive feedback through resistor R6 speeds up the rise and
fall times at the output.

A simpler circuit is shown in Figure 10-17B. Input current is limited by
resistor R1, while diodes D1 and D2 limit the voltage swing within TTL
levels. As before, the line frequency can be obtained from the secondary
of a power transformer. The NAND gate is used to buffer the input signal
and provide some speed-up of the rise and fall times.

)

LNE =l === -~ Rl
FREQUENCY

5V

LINE = ==\==}-=
FREQUENCY

R1

+5V

LINE =l =-\==]-—
FREQUENCY

R1

HEATHKIT
CONTINUING
EDUCATION

|

Interfacing Experiments

If a buffer is already supplied in the system, as in Figure 10-17C, then it is
only necessary to limit the signal current and voltage swing with a
resistor and two diodes.

The clock program (Figure 10-15) is broken down into five main sections.
These are:

Lines 00005-00007. Reserved addresses where the starting seconds,
minutes, and hours are stored. As the program progresses, these
addresses are updated to current time.

Lines 00009-00014, and 00051. They handle the interrupt routine,
and count the seconds.

Lines 00016-00027. The main part of the program keeps track of
seconds; increments seconds, minutes, and hours when appro-
priate.

Lines 00029-00040. A subroutine that handles the mathematical and
updating part of the program.

Lines 00042-00049. Another subroutine that updates the display
with new data. Also insures that hours never go to zero.

In addition, a number of monitor subroutines are used.

Since this experiment is concerned primarily with interrupt handling,
this discussion will explain only that part of the program in detail.

Line 00009 — Load the index register with the line frequency plus one.
(Line frequency is 60, plus 1 yields 61, or 3D,¢.) Thus, when the index
register is decremented in the next instruction, the count circuit will
provide a precise division by 60.

Line 00010 — Decrement the index register by one. Clock timing has
begun.

Line 00011 — The first time through, the index is not zero. Therefore, the
branch instruction is not executed. On a later pass, when the index

register is zero, the program will branch to TIMEUP.

Line 00013 — Wait for the interrupt request to arrive.

10-23

10-24 wwir rex

As discussed in Unit 6, when a non maskable interrupt (NMI) occurs, the
contents of the index register, program counter, accumulators, and con-
dition code register are stored in the stack. The program counter is then
loaded with a new address that is found at addresses FFFFC,s and FFFD 4
(located in ROM). If you examine these addresses you will find 00,5 and
FD,¢ respectively. The microprocessor will then execute the instruction
at address 00FD .

Line 00050 — Return from interrupt. When this instruction is executed,
the microprocessor retrieves the data previously stored in the stack. This
includes the index register and program counter contents. It then exe-
cutes the instruction pointed to by the program counter.

Line 00013 — Branch always is the instruction immediately following
the wait for interrupt. This sends the microprocessor back to line 00010
(ONE6OT).

At this point, you should notice that the program is in a loop that repeats
every sixtieth of a second. This will continue until the index register
decrements to zero. When zero is attained, the branch-if-zero instruction
will send the microprocessor off to the main part of the program, which
increments the clock by one second. The interrupt routine repeats again
after the clock advances.

The remainder of the program is very similar to the clock program
presented earlier. A full explanation of the techniques used was dis-
cussed in a previous experiment and is not repeated here.

This completes this experiment. Switch the Trainer power off and re-
move the wire between LINE and IRQ. Do not disturb the remaining
wires. The circuit you previously constructed will be used in Experiment
3. Proceed with Experiment 3.

CONTINUING Interfacing Experiments 10'25

Experiment 3
ADDRESS DECODING

OBJECTIVES:

Demonstrate the difference between full and partial address decod-
ing.

Show how an address decoding chart is assembled.

Demonstrate how an address can be decoded using various types of
logic circuits.

Show how to construct a memory address map.

Introduction

Many different combinational logic circuits can be used to decode binary
bit patterns. We will examine several decoding techniques in this exper-
iment. The first example will use the circuit you wired in the first
experiment.

Material Required
1 Microprocessor Trainer (with hard-wired circuit)

1 1000 ohm, 1/4-watt, 10% resistor

1 6" double-sided foam tape.

1 Large connector block

1 74LS42 integrated circuit (443-807)
1 74LS266 integrated circuit (443-719)

Hookup wire

10-26 l UNIT TEN

Procedure

1. Carefully examine the circuit you wired to the Trainer in Experi-
ment 1 to see if any wires have pulled out. Figure 10-18 is an
electrical diagram of the circuit.

2. Load the program listed in Figure 10-19 beginning at address
0000, with data CE,; and ending at address 0019, with data E6,.

3. Press RESET, then press DO and enter 0000,,. The display will go
out. After a short period of time, all display segments and decimal
points will light. This is an indication that the program has been
executed.

IW
D706D504 | D3D,D4Dg
ooaoa ooaa| TRAINER DATA
'LLL, ®9 @8 | (NTERFACE BLOCKS
| | —
12 1f 10 9 12 10 9
1104 1/03 1/0; 1/0) . 1104 1/03 /07 110
= |14 18] o
c3 RIW RIW lc-4
2112 T Ber 2112
Ay AgAs AgAy Ay Ap Ag Ay Ag As Ag A3 Ay AL Ag
1 3 I EEEREEE

3 6 IIREERERE
4 @
5

] (_]

'TY) 'TIX] T LLL) B8 88| 1A INER ADDRESS
oooo aoaa oooao Q000 NTERFACE BLOCKS
15, M3Ai2 A AgAg ArAgAsAy A3AA 1A,
SV =y
L—TS—-—' 14] 14
Ic-1 ic-5
rats3a 7400
Figure 10-18 443- ITER
o . 132
Circuit diagram of the first part of the CND T T
|nuu&} -

decoding experiment.

HEATHKIT
EDUCATION Interfacing Experiments 10'27
e
00001 NAM DECODECK REV. 0.3
00002 OFT NOF
00003 0000 CE 001A RENO LLoX £#$001A 18T BLOCKy 1ST ADR
00004 0003 86 BE LA A #4RE nATaA TQ RE STORED
0000% 0005 A7 00 LoaD1r STA A X STORE IT
00006 0007 08 INX FOINT TO NEXT AR
00007 0008 8C 0200 CFX #$0200 18T RLOCKy LAST ADRCHL)
00008 O0OORE 26 F8 ENE LOAD1
00002 0HOD CE 0300 LOX #$0300 NI BLOCKy FIRST ADR
00010 0010 A7 00 LoAan2 s1tAa A X STORE IT
00011 0012 08 INX FOINT TO NEXT AR
00012 0013 8C 0000 CFX #0000 AND RLOCKs LAST ADRC+1)
00013 00186 26 F8 ENE LoAnZ 0000
¢0014 0018 20 E& BRA REDO RECYCLE Raw reseveo
00015 END 100 b bur
| gewee PRESENTLY
1C-16. 17 O1FF UNUSED
AM 0200
Figure 10-19 HARD WIRED |,
Program for memory decoding experiment. UNUSED
e
4, You have written BB,; into every memory location except where EvBOARD %%oosE
the program resides, and between address 0200,5 thru 02FF 4. Ver- o T
ify this by examining a number of locations between 001A,4 and ey lclio
01FF,;. Now examine a number of locations between 0200,; and CLef
02FF s (hard-wired RAM.) _,;__-iL\SED__:/.
NOTE: Addresses 00D3,4 thru 00F3,; will not contain BB. The [Rou Feoo
FFFF

Trainer monitor routine uses that portion of RAM.

Discussion

The memory you have hard-wired to the Trainer occupies memory space
directly above that allocated for “‘on-board’” memory. The assignments
are shown in Figure 10-20. In Experiment 1, you manipulated data within
this range. Then you wrote a program to load these addresses (0200,4 thru
02FF,;) with data. Thus, you found that each space in memory responds
to a specific address.

In this experiment, you tried to load data into every possible memory
location except the program location and memory block 0200,4 thru
02FF . You were unsuccessful with the addresses that do not presently
contain RAM, if your Trainer isan ET-3400. Again, refer to Figure 10-20.

When addresses 0200, thru 02FF,; were checked, the contents were not
modified by the program. This proves that this section of memory is fully
decoded. That is, each location can be accessed with only one specific
address.

A. ET-3400 MEMORY MAP

RA M 0000
1C 14 15
OlfFF
RAN 0200
HARD WIRED |o,c¢
JNuSED b
‘\./'__-
€003
KEY
fYBOARD €006
110 JNUSED
CIIF
DISPLAY
prspLa Clof
wNUSED
’—\/
’\/
FCO:
RO 99
ic-12
FFFF

B. ET-3400A MEMORY MAP

Figure 10-20
Memory maps of the Microprocessor
Trainers with additional off-board
RAM at 0200,, through 02FF,,.

10-28 l UNIT TEN

HEATHKIT
CONTINUING
EDUCATION

Although it was described in the Trainer assembly manual, now is a good
time to briefly look at the Trainer display. As shown in Figure 10-20, the
display occupies space in the Trainer memory network. In addition, each
display segment and decimal point responds to a specific address. Thus,
when you entered BB,; between 0300, and FFFF ; in memory, you also
wrote into each display data latch. This is why all of the display segments
lit while the program was running.

A decoding chart such as the one shown in Figure 10-21 can be used to
indicate the address code for a memory location. The 1's and 0’s in the
high byte indicate the logic levels required to enable the memory block,
while the X's in the low byte indicate that either a 1 or 0 may be present to
select the actual address. Notice that all 16 bits help determine a specific
address, which indicates this memory is fully decoded.

Alrs Az Aqy Ag Ay Ay A3 Ao

Lofofofo] [o]o] 1To} [xIxIxTx] [XIxIx]x]
0 2 X X _J
Y

Figure 10-21
Decoding chart for a memory circuit
that is fully decoding. Includes mem-
ory from 0200,, to 02FF,,.

Procedure (continued)
5. Pull the wire end at location A (see Figure 10-18) from the connec-

tor block. Location A is pin 2 of IC1.

6. Now press DO and reexecute the program beginning at address
0000,;. Again the display will go out, and then light all segments
and decimal points after a short period of time.

7. Press RESET and examine a number of addresses between 0200,
and 02FF ;. Each address should now contain data BB,;.

8. Change the data at address 0210,4 to AA .

mmn'g.ﬂc Interfacing Experiments
e
9. Examine and record the data stored at the following addresses.
0010 _ _ 0810 _ _
0110 __ 0910 _ _
0210 _ _ 0A10 _ _
0310 _ _ 0B10 _ _
0410 _ _ 0C10 _ _
0510 __ oD10 _ _
0610 _ _ 0E10 _ _
0710 _ _ 0F10 _ _
Discussion

When you disconnected IC2B from the circuit, address lines Ag, Ay, and
A,; were no longer able to take part in address decoding. Since line A,
was still connected, the circuit still decodes to 02XX,,. However, other
addresses will now decode the same circuit.

A new decoding chart (see Figure 10-22) can be assembled by examining
the schematic in Figure 10-18. Bits A, thru A, are connected directly to
memory and select specific addresses in that memory block. An X is
placed in each of the corresponding boxes to indicate that the logic levels
are unknown but do take part in address selection. Bits A, thru A,; must
be logic 0 so the correct logic level will be applied to the inputs of NAND
gate IC1. Therefore, a 0 is placed in each box.

Disconnecting IC2B removed bits Ag, Ao, and A, from the circuit. Since
these bits have no effect in the decoding process, these are “‘don’t care”
bits. A dot (+) symbol is then placed in each of the corresponding boxes.

Address bit Ay is still connected to IC1. Since it must be a logic 1 to enable
memory, a 1 is placed in its box.

Als A2 AN Ag Ay Ag A3

AQ
[ofoJofo] [efeft]e] [XIX[X]X] [X[X]X]X]
X X

o 23,6, 7.
A B EF

Figure 10-22
Decoding chart for a memory circuit
that is partially decoded. Indicates that
many addresses will decode this block
of memory.

10-29

10-30

UNIT TEN

Once you have constructed a decoding chart, you can determine all of the
addresses that will access the circuit. In this case, the most significant
four bits are clearly defined as zeroes. The next four bits are more compli-
cated. The only defined bit is A,. Bits Ag, Ay, and A}, can be any logic
level. Therefore, any hex number which contains the A, bit as a logic 1
will be valid. These hex numbers include 2, 3,6, 7, A, B, E, and F. Bits A,
through A, are variable and select the specific addresses within the
circuit.

The chart you completed in step 9 will support this discussion. When you
changed the contents of address 0210,5 to AA ¢, the addresses that had 3,
6,7, A, B, E, and F as the second most significant hex digit also appeared
to contain AA . This, of course is impossible, since no memory exists for
those addresses.

RST BA
L
ooaag
—l DATA (/0 coge
REiloowgo — W
reed RIW
5 !
I—VMAQ)Z _J} 1
— 4 tc-sal |
NMT —H
. r 7400 2 ¢
0000} | ___ T
osoo ! 0706050, | D3D,Dy04
,\, p—
VRAITCg > gooo 0O0O0O| TRAINER DATA
ne k2 (LX) ¥® 88| NTERFACE BLOCKS

|
i
|
. 1

:]
9 [l !
1C-5¢C 3 3 g !

1 10| 7400 \ 1C-1

= 741530 |
|

I
I
1
|
]
i
1
i
i
]
i
I
i
i
]
! 0
| o 2
| I |12 uf o 9 12 ul 1o 0
[I 4 1V [TT70z 1103 1105 170, 1704 1103 1105 170
: ic-2 A~ m ! riw AL &R/
! 741542 2—7 A " IC-3 Ic-4
i — i
| 20y 7190 | 2112 e Bler 2112
3 1
| ig §“ PR A As Ag Ay Ay Ay Ag Az AgAs AgA3 Ay Al Ag
! ER : EUEEEEEE IEEERERK
] i
1 |
1]
1 |
] 1
I |
1 ! J
1 1
1 i
] i
| |
| | P
i [T X) anae ETY)
I cooo oooo ! feooa :::; [HRINER ADORESS
L = R | INTERFACE BLOCKS
-------- 15, Aishia=—R11, AgAge——————i A7AGAA4 AjhaA1Ag
! [coow 2 -
= 14 16] 16 14
1c-1 frc-2 ic-a| jic-s
Figure 10-23 741530 [raLs42 2112 | | 7400
. 443- | | aa3- 443-| |aa3-
Circuit diagram of the second part of 6ND 732 307 5 !
IDUUI% q 5% %]

the memory experiment.

HEATHKIT
CONTINUING
EDUCATION

e

Interfacing Experiments

Procedure (continued)

10.

11.

12.

13.

14.

Switch the Trainer power off. Then carefully remove all of the
wires from IC1 and IC2, except for the +5 V and ground wires. The
remaining circuit wires will remain unchanged in the circuit you
are about to construct. To aid you, the new circuit is enclosed by a
dashed line in Figure 10-23.

Using the IC puller tool, carefully remove IC2 (74LS27). Then
install the 74LS42 16-pin IC. Since you are replacing a 14-pin IC
with a 16-pin IC, you will have to reposition the +5V wires or
ground wires (pin 8 or pin 16).

Refer to Figure 10-23 and wire IC1 and IC2 into the circuit. Note
that gate C of IC5 is also wired into the circuit.

DEC BCD INPUT OUTPUT LINES

NO. D C B A 01234567839
0 |00 00O 01 1 1t 1 11111
1 o o0 0 1 1011111111
2 (oo 1 o0 1101111111
3 [0 0 1 1 11101 11111
4 o1 00 111101 1111
5 o 1 0 1 11111011 11
6 |0 1 1 0 1111110111
7 (o 1 1 1 1111111011
8 |1 000 1111111101
9 (1 0 0 1 1111111110
>9 | INVALUDCODES | 1 1 1 1 1 1 1 1 11

Figure 10-24
Logic truth table for 74LS42 4-to-10
line decoder.

Carefully examine the circuit to make sure all of the wires are
properly routed. Also make sure none of the previously installed
wires have pulled free.

Using the schematic in Figure 10-23, and the logic truth table for
IC2, found in Figure 10-24, construct a memory decoding chart in
Figure 10-25.

Als A1z Anl Ag Ay AQ

LJIJ_I!IILJHIIAIIJIIII

Figure 10-25
Blank decoding chart.

10-31

10-32

UNIT TEN

15. Is the circuit fully or partially decoded?
— Fully ___ Partially
Why?

16. Now that you have determined the address block your memory
resides at, load a few of the addresses with data.

Discussion

The circuit you just constructed contains a fully decoded memory. Its
decoding chart is shown in Figure 10-26. Each bit position is used to
define a specific memory address.

In an earlier. experiment, you used a combinational logic decoding
technique. With that technique, it is necessary to use an individual logic
circuit for each memory block. In the circuit you just completed, a 4-to-10
line decoding IC was used to define a block of memory. Since it is
possible to define ten different values with four input variables, this
device could be used to address ten different memory blocks. Although
there was no difference in the number of IC’s used in the two experi-
ments, expanding the amount of memory would require fewer device
select IC’s when the 4-to-10 decoder is used. This can be seen by reexa-
mining the circuits in Figures 10-18 and 10-23.

Als Az Apg Ag A7 Ay A3

{ofolofo] L[]} [xfx]x]x] IXIX[XIXOJ
0 F X X

Figure 10-26
Decoding chart for circuit using
4-to-10 decoding IC.

Procedure (continued)

17. Switch the Trainer power off. Then disconnect the wire at pin 1 of
IC2 (74LS42) and connect it to pin 6 of IC2.

18. Thecircuit is now fully decoded to address 5FXX ¢. This is because
every address bit plays a part in determining a specific memory
location. Switch the Trainer power on and examine a number of
memory locations between 5F00,; and 5FFF . Notice that you can
store and read data at these locations. However, you can no longer
store and read data at 0F00, thru OFFF .

S/

Interfacing Experiments

Discussion

The 4-to-10 line decoder can also be used to quickly change decoding
addresses, as you have just done. Keep in mind that this experiment uses
only one 4-to-10 line decoder to define the most significant hex number.
It is not unusual to see them used at lower order addresses. Your Micro-
processor Trainer uses this decoding technique for its “on-board” mem-
ory.

Procedure (continued)

19. At this time, you will need more breadboarding space. Locate the
box containing the large connector block. Then refer to part A of
Figure 10-27 and install the connector strips supplied with the
block. You may have some strips left over.

20. Refer to Figure 10-27B. Then remove the paper backing from the
vinyl strip supplied with the block, line up the long edges of the
strip and block, and press the sticky side of the vinyl strip against
the block.

o VINYL
m_ CONNECTOR STRIP
i STRIP

| ;.L 0
F\K
—

Figure 10-27
Large connector block assembly.

10-33

10-34

UNIT TEN

21.

22.

Read this whole step, then locate the foam tape and cut two 3/4”
squares from it. Refer to Figure 10-28. Remove the paper backing
from one side of each square and affix each square to the small edge
of the Trainer cabinet as shown. The spacing between the squares
should be a little less than the length of the connector block. Now
remove the paper backing from the other side of the squares and
affix the connector block to the squares. Try to center the squares on
the back of the block. This block will provide additional bread-
boarding space.

Switch the Trainer power off and install a 74L.5266 (443-719) IC in
the new large connector block, near the left end. This IC will
become IC6 in the circuit you construct next.

LARGE
CONNECTOR BLOCK

3/4" x 3/4"
FOAM TAPE

Figure 10-28
Outboard connector block installation.

HEATHKIT

10-35

— ATION Interfacing Experiments
i RST (~BA
1
ogooo
ooo
RE DATA 1/0 b W
Gaya] s3],
- VA D2 1
IHz r T —FALT ic-sal)
| o r 7400 {2 0
ggoo{|joocoo
ooos|{osaoo 07060504 | 030,009
- Lined 02 VRAY Lirg oooo 0O0O00| TRAINER DATA
el sy W® W W NTERFACE BLOCKS
5 I] l ‘
9 8 ‘
- FRETO - A 8
7400 i 12 | ic-1
| 1C-50 11 74LS30
m——— e —————— ! 13} hais206 /© 2] ! 12 11 10 9 12 11 10 9
i ! 1104 1105 1705 170, T103 1103 170 1/0
- ! l RIW el R/
‘:T I ic-3 Ic-4
2_43__ E 2112 P Uler 2112
TR] A7 AgAg Ag Ay Ay Ay Ag Az Ag As Ag A3 Ay Al Ag
—_ 741542 sfo I T o STt 1 2 3 2 IEEEREEE
L2lp 6L i
51 H I i
mi oL i
15, T !
T [
— At |
| |
| | —
! { |
| —--4--]--— - | R O _
— \ 3 r Fys | s .
i DATA SWITCH ase ggaag | | as 1 ‘_.] TRAINER ADODRESS
' CONNECTOR BLOCKs|B QOO ggoa : ogoo : ggoayj, goaQa 0000 {NTERFACE BLOCKS
i D706D504 03020109 | A Apdy; L-f\nAlé\oAs-' ATAgAsAY A3AzA1Ag
| e e o e e o o o e e e i e e e e i e e 14 . -
= =N o
. @ 14] 6] ol J1e
1c-1 1C-2 1C-4 IC-5 1C-6
Figure 10-29 741530 741542 2112 § | 7400 | |74uS266
: : : 3 443 - 443 443 - 443 -1 443 -
B Circuit diagram of the third part of the onb 132 500 121 770
decoding experiment. [Coos b\ 8 D I
23. Connect +5-volt power to pin 14 and ground to pin 7. Then refer to
Figure 10-29 and construct the circuit shown. To aid you, the area
— enclosed by the dashed line is the only area where modifications
are made to the previous circuit.
A®B-Y
— 24. Recheck the wiring to insure it is correct. Be sure pins 9 and 10 of A
IC5C are connected to pin 2 of IC2. 8
- 25. Refer to Figure 10-30. This is the truth table for a gate in IC6. Notice

that if the B input is held at logic 0, the relationship between input
A and output Y is complementary (A is the inverse of Y). If the B
input is held at alogic 1, the relationship between A and Y is direct

Figure 10-30

gate.

(no inversion). Thus, input B can be used as a direct driver or an

inverter driver. This feature will be used in the experiment.

Truth table for exclusive NOR (ENOR)

10-36 l UNIT TEN

HEATHKIT

26. Position all of the data switches in the down (logic 0) position.
27. Using the schematic in Figure 10-29 and the table in Figure 10-30,
determine the decoding chart for the circuit you constructed. Fill in

the blank decoding chart in Figure 10-31.

28. Is the address fully or partially decoded?
Fully ___ Partially

29. What is the address block this circuit will decode?
———_gthru_ __ _;

30. Switch the Trainer on. Then enter data into a number of addresses
in the address block you calculated.

A

Als Al Ay Ag A7
|

IO IO OO OO

Figure 10-31
Blank decoding chart.

Discussion

The exclusive NOR gates used in the circuit all function as inverter
drivers. Since each is connected to an individual input in IC1, and the
4-to0-10 line decoder is still in the circuit, each address line plays a part in
determining a specific address. Therefore, this circuit is fully decoded,
and occupies addresses 1000,, thru 10FF .

Procedure (continued)
31. Change data switches D; through D, to 0101,. This equals hex 5.

32. Whatisthe address block this circuit will now decode? __ _ _,sthru

————16

33. Test the new address to see if the circuit will respond properly.

Discussion

Now you see the power of the exclusive NOR gate. Addresses are easily
switched through them. Notice that whatever binary bit pattern you
select with the data switch, the circuit responds to it. Now you will see
one other feature of these particular exclusive NOR gates.

HEATHKIT

CONTINUING
EDUCATION

—caa—

interfacing Experiments 10'37

Procedure (continued)

34.

35.

36.

Switch the Trainer power off. Refer to Figure 10-29. Remove the
three wires interconnecting IC1 and IC6, from pin 11 to pin 3, pin 4
to pin 4, and pin 2 to pin 10. Refer to Figure 10-32. Then intercon-
nect pins 3, 4, 10, and 11 of IC6. Finally, insert a 1000 ohm,
1/4-watt, 10% resistor between +5 volts and IC6, pin 11.

The circuit should still be located at address block 1500, thru
15FF . Check a few of the addresses where you previously entered
data. They should contain the same data.

Change the data switches to a new bit pattern, determine the ad-
dress code, then examine a few locations to assure yourself of
address code accuracy. Repeat this procedure a number of times.

Discussion

The 74LS266 exclusive NOR gate has a special characteristic; it has an
open-collector output. This means that a number of gates can be tied
together, as you just did. The electrical term for this procedure is wire-
OR’ing, where the outputs function as though they were inputs to an OR

gate.

One more aspect of circuit decoding will be discussed before the next
experiment. This is important, since an experimental error could possi-
bly result in the destruction of a gate or memory package.

Figure 10-32

Modification to third circuit of experiment.

10-38

UNIT TEN

A problem arises when two circuits decode to the same address. If two
memories containing different data occupy the same address, they will
try to pull the data lines in two different directions. Since this is electri-
cally impossible, one circuit will give in, usually resulting in permanent
destruction to the circuit. Thus, it is important when designing circuits
like those used in this experiment to always check for conficts in address
decoding.

Procedure (continued)
37. Switch the Trainer power off and pull the line cord plug.

38. Pullthe hookup wires from the circuit and save them for future use.

NOTE: Ifyour Traineris an ET-3400, perform step 39. If your trainer isan
ET-3400A, perform step 39A.

39. CarefullyremoveIC’s 3 and 4 (2112) from the large connector block
and install them in IC sockets 16 and 17 in the Trainer. Observe the
normal precautions for MOS devices, and make sure you align pin
1 of each IC to the proper position. Then remove all of the remain-
ing components from the two large connector blocks.

39A. Carefully remove IC's 3 and 4 (2112) from the large connector
block. Observing the precautions for MOS devices, place them on
the anti-static pad prior to placing them in the small parts container
furnished with this course. Then remove all of the remaining com-
ponents from the two large connector blocks.

Discussion

Your Microprocessor Trainer now contains 512,, bytes of RAM. This is
located at addresses 0000, through 01FF,,. Proceed to Experiment 4.

Interfacing Experiments 10'39

Experiment 4
DATA OUTPUT

OBJECTIVES:

Demonstrate microprocessor interfacing to an external data dis-
play.

Show how a 7-segment display is connected.

Demonstrate the trade-offs between hardware and software display
decoding.

Provide an opportunity to write a number of output programs.

Introduction

Until now, you have been using programs that moved data within the
Trainer, with any results displayed by the ‘‘on-board’’ LED’s. This may be
adequate for your purposes, but other methods are needed if external
equipment uses the data. The data may take the form of a visual display
for an operator to read, or a digital control signal to manipulate an
electro-mechanical device. This experiment will present a number of
interfacing methods and examine some of the advantages and disadvan-
tages of each method.

Material Required

1 ET-3400 Microprocessor Trainer

8 470 ohm, 1/4-watt, 5% resistors

2 10 k ohm, 1/2-watt, 5% resistors

1 FND-500 7-segment LED (411-819)
1 TIL-312 7-segment LED (411-831)

1 7400 integrated circuit (443-1)

2 7475 integrated circuits (443-13)

10-40 | wuren

1 9368 integrated circuit (443-694)

1 74LS30 integrated circuit (443-732)
1 74LS27 integrated circuit (443-800)
1 74LS259 integrated circuit (443-804)

Hookup wire

Procedure

1. In this part of the experiment, you will examine how the MPU can
be interfaced to LED’s. Make sure the Trainer power is switched off;
then construct the circuit shown in Figure 10-33. Notice that +5
volts and ground are connected to pins 5 and 12 respectively for
IC’s 1 and 2 (7475). The other IC’s use pin 14 for +5 volts and pin 7
for ground.

DATA LEDS
a| [o] [a] (o] [a] [0 o
o| |al| o} {o] |o| |0 u o LED ’ VMA-02
ol |o] o] {2] {2] [3] |9] |B]cONNECTOR BLCCKS lHz— 7y
5 %J L o cooga
’uu*
une=d | Log2
of 1o] 1s) 16 9 16 1
Q8 Q3 QZ Qlgl4 g 4f0d R "
1c-1 Ic-2
7475 13413, 1475 2
203 b2 01 fpa 03 02 01 | L 3 e B
5

o

UK M o 3] ¢ 3./ 1c-3A 74L530f 1
7400 f2 | 1OZ(IC-AAI—7
4152713

11 Lr"

r—— N 3

6§ /1c-48[4
' TIY] 'YI X TRAINER DATA 74152 ‘

cooo cooa | INTERFACE BLOCKS

9

D706D504 03020, 09 8 %
+5 '@ Il

[=R=R=N P . 4
15 15 14 14 |ia

1C-1 1Cc-2 ic-3 IC-4 1C-5
7475 1475 7400 T4LS27] {74530

443 - 443 - 443-1 443 - 443-
13 13 300 | | 132
GND
Goom}——4——1 e
- coeo T Y] (XX}
TRAINER ADDRESS | g ggg oooa aooag oaao
INTERFACE BLOCKS
. 15 A13 AL Aghs ArheAsAq A3hAlAg
Figure 10-33 A Az A10

Circuit diagram of the first part of the
output experiment.

HEATHKIT

Emurulgf Interfacing Experiments 10’41

2. Recheck your wiring; then switch the Trainer power on. The data
LED’s will show a random value.

3. Figure 10-34 is a decoding chart for the circuit you constructed.
This shows that the circuit is partially decoded. A 2-digit hex
number can be stored at any of these decoded addresses. Examine
address 020F,;. Then change the contents to 55.

(loTeTe] [T+ (lelsle] GLLTH
0 0 F

{ .
(33%09

Figure 10-34
Decoding chart for outputting infor-
mation to the data LED’s.

4. ThedataLED’sindicate __ _____ _ ». This is the binary equivalent
of the data you stored at address 020F .

5. What hex value would be required to turn off all of the data LED’s?
~ —1¢- Verify your answer.

6. What hex value would be required to turn on all of the data LED’s?
— —1- Verify your answer.

7. Change the data at address 020F s a number of times and verify its
value with the data LED’s.

8. Writeand execute a program that will alternately turn all of the data
LED’s on and off. Use a delay loop in the program so that the on and
off cycles can be recognized. Remember that an MPU cycle takes
approximately 2.5 microseconds in the unmodified Trainer. If your
Trainer has been modified for use with the Memory 1/O Accessory,
an MPU cycle will take about one microsecond.

If you have any difficulty, use the Trainer single-step function to
examine the operation of your program.

10-42

UNIT TEN

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

0000
0001
0004
0007
0008
0004
O0O0OR

Discussion

Refer to Figures 10-33 and 10-34. Notice that a partial decoding scheme is
used. A fully decoded circuit could have been used by adding more
combinational logic.

In previous decoding circuits, the VMA and @2 signals were separate. A
logic 1 indicated their true state. In this experiment, we took advantage of
another Trainer output; the VMA@Z line. It is logic 0 when both the VMA
and (2 signals are at their true state. This reduces the number of logic
gates needed for decoding.

The circuit you constructed appears as a write only memory to the
microprocessor. That is, the MPU can write into the selected address, but
it can not read the data stored. However, since eight data LED’s monitor
the stored information, you can read the data. Thus, the MPU is inter-
faced in a way that produces usable data.

Two bistable quad latch IC’s are enabled when one of the eight pre-
selected addresses is accessed. They act as an 8-bit memory storage
device. Thus, any data appearing on the data lines is latched into the two
devices. Since the output of each latch is active, the data LED connected
to each will follow the data level. Storing 00, will turn off all of the LED’s,
while storing FF, will turn each LED on. '

Right now, the data LED’s should be switching on and off at a regular
interval, because of the program you wrote and executed. If you had any
difficulty with the program, refer to Figure 10-35. It lists a program to
flash the data LED’s. The contents of addresses 0005 and 0006 control the
amount of delay. You may wish to change this number if your Trainer has
been modified. While this program may not match your program, it is one
of many ways to accomplish the same objective.

NAM FLASHER1 REV. 0.1

OFT NOF
4F CLR A ACC NOW 0
E7 O020F ALTER STA A $020F STORE ACC TO LIGHTS
CE 5500 Lox #65500 X
09 WAIT DEX XWAIT
26 FI EBNE WAIT X
43 CoM A TOGGLE ACC
20 F4 ERA ALTER GO BACK TO RESTORE
: END

Figure 10-35
Program to flash data LED’s at regular
interval.

_—
HEATHKIT
CONTINUING
EDUCATION

Interfacing Experiments

|10-43

Procedure (continued)

9. Write a program to alternately store 1’s and 0’s to the display LED’s.
But this time, adjust the timing so the LED “on” time is longer than
the “off” time. Then execute the program.

Discussion

This program required two timing loops, to allow for the difference
between on and off time. If your first program contained two timing loops

of equal duration, it was a simple matter to modify the delay times. Figure
10-36 illustrates a second method for accomplishing the task. The delay

times shown are for a slow clock. You may wish to change them if your
Trainer has a fast clock.

In the next part of the experiment, you will add a decoder-driver and a
common cathode, 7-segment display to the circuit.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
000135
00016

0000
0000
0001
0004
0007
0008
0009
000k
000E
0011
0012
0013
0015

4F
CE
7
43
09
26
CE
E7
43
09
26
20

9500 CYCLE
020F

HOLD1
Fo
FFoo
Q20F

HOL. o2
FI
EA

Program to flash data LED’s at a non-
regular interval, with the on time
longer than off time.

NAM
oFT
ORG
CLR
LIOX
STA
COoM
nEX
ENE
LoXx
STA
COM
DEX
ENE
BRA
END

FLASHERZ REV.

NOF
0

#$5500
$020F

HOL L'
¥SFFOO
$020F

HOL.DZ2
CYCLE

Figure 10-36

0.1

ACC NOW "0"
LOGIC "0" TIME

BITS NOW °1*

LOGIC "1* TIME

RITS NOW "0

ONE

CYCLE COMFLETE

10-44

UNIT TEN

Procedure (continued)

10.

11.

12.

13.

14.
15.

16.

Figure 10-37
Additional data display for first output

circuit.

Switch the Trainer power off. Then, without disturbing the circuit
wired to the Trainer, add the circuit shown in Figure 10-37. Use the
large connector block affixed to the Trainer cabinet to hold the new
circuit. The FND-500 (#411-819) display is the larger of the two
displays.

Recheck your wiring, then switch the Trainer power on, and press
RESET.

The lower four bits of your data byte will determine the digit
displayed. Enter A5, into address 020F .

What is the bit pattern displayed by the lower four display LED’s?

[rp—— T

What is the hex equivalent? _.
What is displayed by the new 7-segment display? _.

Write a program that will cause the 7-segment display to count
from 0 to F g and then continuously repeat. Include a delay loop so
that each digit will remain on long enough to be identified. Execute
the program.

DATA LEDS

80004

LED
al (ol 18] I OICONNECTOR
a4 {9} sLocks

ajl|lo

1 0

6 2 1

+5V
7

[Eeen] ©
-[Eeaa] ©
-[gaas] ©

-~
w
~

5 IC-6

3
9368
{FRONT VIEW) 16 443-694 8
RIDGES F G ABLCODE

= o] 14] 13 12] 1] 10] 9
10(g)9TTI8E)TTa161b)
1=
A 3
8
== :\}7
[+
"U an
—4t o

1(e) 2(d)3t14(c) 5
[==I=E—1=

FND-500
411-819

Interfacing Experiments

Discussion

The circuit you just constructed contains a 4-line-to-7-segment decoder
driver and a 7-segment, common cathode display. The decoder driver
(9368) contains a large maze of combinational logic which allows it to
decode four data bits and drive the proper segments in a 7-segment
display to produce the corresponding hex digit.

The display circuit is a multiple LED array with common cathodes. The
cathodes are grounded, and the decoder driver supplies the necessary
power (approximately 30 mA at +5 volts) to light the selected LED
segments.

If you had any questions concerning the program to increment the dis-
play, refer to Figure 10-38. It contains a simple program to increment the
display from 0 to Fi; at a slow rate. The simplicity of this program
assignment removes the need to reset accumulator A after incrementing
to OF 4. It continues beyond OF ;5. But, since only the four lower bits of data
are decoded, it appears to count to OF ;s and then reset to 00,,. Enter the
program in Figure 10-38 and watch the eight data LED’s. They show the
actual value stored in accumulator A.

Next you will see how the MPU handles common-anode type displays.
Also, you will see that a decoder driver is not necessary if you are willing
to let the MPU do the decoding.

00001 NAM STEF-UF REV.0.4

00002 OFT NOF

00003 0000 4F CLR A START WITH O
00004 0001 R7 020F UFDATE STA A $020F STORE TO OUTFUT
00005 0004 4C INC A ADD ONE

00006 0005 CE FFFF L.D0X #S6FFFF TIME TO WAIT
00007 0008 09 UFDATS DEX TIME RUNNING OUT
00008 0009 246 FI ENE UFDAT2 TIME UF YET?
00009 OOOR 20 F4 ERA UFOATE

00010 ENTI

Figure 10-38
Program to increment the 7-segment
display from 0 to Fj4 in an apparent
cyclic manner.

10-45

HEATHKIT
10-46| uniTTeN CONTINUING

Procedure (continued)

17. Switch Trainer power off and remove the wires, decoder driver,
and display package from the large connector block affixed to the
Trainer cabinet.

18. Refer to Figure 10-39 and construct the circuit shown. Since the
resistor leads are too short to reach from the connector block to the
data LED connectors, insert the free end of each resistor into an
unused connector socket. Then run hookup wire to the appropriate
LED connector block.

19. Reexamine the circuit to make sure it is properly wired, and the
resistor leads do not touch adjacent resistor leads. Then switch
Trainer power on and press RESET.

20. Thiscircuit, like the previous circuit, uses the address decoder and
latches initially wired to the Trainer. Data stored at address 020F ¢
will determine which display segment will light. Enter 00,4 at
address 020F ;. What does the display indicate? _.

21. Change the data to FF,;. What does the display indicate? _,.

22. Tolightaparticular segment in the display, the corresponding data
bit must be logic 0. The table below the circuit in Figure 10-39
indicates the segments connected to the data bits. What bit pattern
will produce the number 1 in the display? _ _ _ _ _ _ _ _ 2

o
>
=
>
~
m
o
[

ol [o] [o] [o LED

PIN I:_ Q) {9 |O[CONNECTOR BLOCKS
; 'ﬂ oli{al{|ol}ja

3 ANODE 14 ! 0

4 NC

5 NC

6 NC

7 e

: ‘:)P 8f 7] 21y 9 3V

Figure 10-39 10 ¢ =

Additional data display. 112 NG (FRONT VIEW)
13 b e | L4
14 ANODE %|® &= |13
et b
=935 efll
’H UC'”’ DATABIT 7 6 54 3 210
hlet e o R i SEGMENT a b c 4 e f g OP

. 0P ofg
TiL-312
411-831

o

-~

— EDUCATION Interfacing Experiments 10"47

23. Convert the bit pattern from step 22 to hex and enter it at address
020F,s. Although it is possible to display two 1’s, the correct 1 is
produced when segments b and c are lit.

24. Load and execute the program shown in Figure 10-40. If your
Trainer has a fast clock, you may want to change the contents of
address 000B to provide a longer delay.

00001 NAM CHAROUT1 REV. 0.1
00002 orT NOF
00003 Q20F DISFLA EQU $020F
- 00004 0000 ORG 0
00005 0000 CE 001A RECYCL LDX #CONES START OF TARLE
00006 0003 A6 0O NXTDIG LA A X LOAD RIT FATTERN
— 00007 0005 E7 0O20F STA A DISFLA STORE TO DISFLA.
00008 0008 86 FF LA A #$FF X
00009 000A C&6 35 HOLD1 LDOA B #3535 X
00010 000C 3A HOLO2 DEC E X WAIT
a 00011 000+ 26 FI ENE HOL 2 b
00012 000F 44 DEC A X
00013 0010 26 F8 ENE HOLD1 X
- 00014 0012 08 INX FOINT TO NXT FATTERN
00015 0013 8C 002A CFX #FINAL+1 LAST ONE YET?
00016 0016 27 EB REQ RECYCL IF 80y START AGAIN
_ 00017 0018 20 E9 BRA NXTDIG IF NOT» NXT FATTERN
00018 001Aa 03 CODES FCR 303y $PF » 25,9001, $99 7549
001ER 9F
001C 25
— oo1Dn on
001E 99
001F 49
_ 00019 0020 41 FCR $41+$1Fr$01 419,411,300
0021 1F
0022 01
0023 19
- 0024 11
0025 o
00020 0026 63 FCH $63:$85,%061
— 0027 935
0028 61
00021 0029 71 FINAL. FCR %71
00022 END

Figure 10-40
Program for incrementing the
7-segment display from 0 to F; in a

— cyclic manner.

10-48

UNIT TEN

Discussion

In this experiment, you have successfully eliminated a decoder driver,
but at the expense of increased software. The program sequentially stores
bit patterns to the display to make it appear as number 0 thru F ¢ are being
stored.

Addresses 001A ;4 thru 0029, contain the sixteen display codes in numer-
ical sequence. This “look-up” table is then accessed by the index register
to obtain the required code.

You may have noticed that the B,s digit had a decimal point lit next to it.
This is sometimes used to indicate it is a B rather than a 6. If you prefer not
to have the decimal point, you can change address 0025, to C1y.

The display used in this circuit is of the common anode type, with the
anodes connected to +5 volts. To turn on a segment, its cathode must be

grounded. Therefore, a logic 0 turns on a segment while a logic 1 turns it
off.

In some applications, it is convenient to assign each segment of the
display its own address. In the next part of the experiment, you will see
how this is accomplished.

Procedure (continued)

25. Switch the Trainer power off. Then remove all of the wires and
components from both large connector blocks.

26. Refer to Figure 10-41 and construct this circuit on the Trainer’s
large connector block.

27. Switch the Trainer power on. Then enter 00, at address 02F0.
Since only the D, bit is connected to the display circuit, a logic 0

will turn a display segment on, and a logic 1 will turn the segment
off.

28. Advance the address and enter 00,,. Continue this process and
observe the display. Stop after you enter 00,5 at 02F7 4. Notice that
all of the display segments are lit, including the decimal point.

29. Examine address 02F0,s and watch the display. Now advance
through the next seven address locations while you watch the
display. What is finally displayed? . Why?

CONTINUING i : 10-49
rimen
EDUCATION Interfacing Experiments
:‘_——%f————_
PIN
1 a
SEGMENT a b ¢ d¢ e f g DP 2t
ADDRESS 0 1 2 3 4 5 6 1 (FRONT VIEW) 2 ANODE
g e ’:“E
1z VIA702 07040504 030,009 2|s n=an ohi3 ¢
cooo TRAINER DATA oooo aocoa. 3.10 b 7 e
cosao INTERFACE BLOCKS |[opoao 0008, —=t oy 8¢
une | Loz, Az Ao Y EH Uc.m 13 SP
Als As Al AgAg A7hgAsAy As"z"t"oT 6o Umammbqels 11 ¢
gooo goago gooao cooao ST&E e 0P s 12 NC
TRAINER s sans spe N sen ~l/2_w T2 13 b
ADDRESS" | 411-831 14 ANODE
INTERFACE/] f +5V
BLOCKS 13
s pyn LAWY 14
nl 5 13
A
1 A, 6 a0 3
2 1c-1 -7——/~N~—i
7415259 19 7] B
H o 2 , ,
4
1c-3 \8 ME 11, L] S
. 51141530 12 3
= R1-R8
1L3 = . s Pl aro -
1l ok Le-w
3 12 1z2-w
T\1C-28N\ A6
5 HaLs2y,
+5
— Eosstt—t—
o)iC- -
11}74L5217 ic-1] [rc-2| [1c-3
7aLs2s9) |7aus27| | 7aLs3o
483-1 | 4a3-| | a43-
304 300 132
GND
g 7 7
caag -} X . 1]
Figure 10-41
Circuit diagram of the fourth part of
i Als Al Al Ag A7 Ay A3 AQ
the output experiment. 5] (T pIRER
- F

Discussion

[o]ofo]o] [ofo[1]
) 2

Decoding chart for the fourth output

Each display segment now has its own address in memory. This is shown
in the circuit decoding chart in Figure 10-42. Refer to Figure 10-41.
Address bits A,, A,, and A, are decoded to select 1-of-8 bistable latches in
IC1. Then during an MPU write operation, the logic information supplied
by data bit D, is coupled into the selected latch. A logic 0 will turn on the
appropriate display segment, while a logic 1 will turn off the segment. A
table showing address/segment data is provide in Figure 10-41, above the
circuit diagram. The remaining address bits, and VMA+(2 are used to
enable (E) the latches.

Since this circuit is the write-only type, the D, line will “float”” during an
MPU read operation. Therefore, the D input of IC1 will go high (10 k ohm
pull-up to +5 volts) and couple a logic 1 into the latch. This is why a
segment went out when you examined its address without entering data.

Figure 10-42

circuit.

0-7

10-50

UNIT TEN

'HEATHKIT
CONTINUING

Procedure (continued)

30.

DIGIT | DATA

03
oF
25
oD
99
49
41
1F
ol
19
R
co
63
85
61
71

31.

32.

33.

MTMOOPP>PORIOVLHEAWN~—~O

Figure 10-44
Display data table for the character
output program.

34.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014

0000

02FO0
0001

CE O02F7
0004 D6 00
0006 E7 00
0008 356
0009 09
000A 8C
ooon 26
000F 3E

0000
0001

02EF
F?

Load the program listed in Figure 10-43. Begin at address 0001,,.
(Address 0000, is reserved for data.) Notice that the comment
column in step 0013,, indicates this program will be used as a
subroutine in a future program.

Refer to the display data table in Figure 10-44 and select a hex digit.
Then enter the corresponding data at address 0000.

Execute the program beginning at address 0001,,. The hex digit
you selected will appear in the 7-segment display.

Load the program listed in Figure 10-45. Begin at address 0102
(step 00006,,). (Addresses 0100 and 0101, are reserved for data.)
Then enter 39,5 at address 000F ;. The program located at addresses
0001 thru 000F 4 is a subrautine for the program you just entered.
The data stored at addresses 0124 thru 01335 serve as a look-up
table for the 16 hex digits you will display. If your Trainer has a fast
clock, you may want to change the contents of address 0115 to
provide a longer delay.

Execute the program beginning at address 0102,,. The 7-segment
display will sequentially show the hex digits 0 thru F in a cyclic
manner.

NAM CHAROUTZ2 REV., 0.2
oFT NOF
ORG 0

SEGMEN EQU $02F0

CHARAC RME 1

OUTCHR LIX FSEGMEN+? TOF OF SEG. LIST
LDlA B CHARAC GET FATTERN

NXTSEG STA B 0sX STORE 7O LATCH
ROR R SHFT FOR NXT RIT
DEX
CkX ¥SEGMEN-1 LAST SEG. YET®?
BNE NXTEEG
WAI DONE (39 FOR SUBROUTINE)D
ENL

Figure 10-43
Program for writing data into a
7-segment display.

HEATHKIT
CONTINUING
- EDUCATION
e

Interfacing Experiments

00001
¢o002
¢0003
— 00004
¢0C03
00006
00007
00008
0000%
00010
— 00011
00012
20013
¢Q0014
00013
00016
Q0017
- o018
Q0019
00020
00021
00022

0100

0100

01062
0105
0107
0109
010C
Q10F
0112
0114
Q116
0117
0117
011aA
011C
o11nD
Q0120
0122
0124
0125
Q0125
- 0127
0128
Q129
0124
012RB
012C
QL2D
Q012E
012F
0130
- 0131
0132
0133

00022

- 00024

0000
0002
0001

CE
Ab
9?7
FF
RL
FE
86
Cé

[
~t

26
44
26
08
8C
27
20
03
PF
23
on
?9
49
41
1F
01
19
11
co
453
83
61
71

0124
00
00
0100
0001
0100
FF

(W 2w

Fh

F8

mmeo
O

NAM OUTSTRIG REV. 0.3
ORG $0100
CHARAC EQU 00
ISAVE RMBE 2
OUTCHR EQU 01
START L.IX ¥COLES FOINT TO COLE TEL
NXTDIG LA A 0sX GET PATTERN
STA A CHARAC STORE IT
STX ISAVE SAVE INDEX
JSR OQUTCHR QUTFUT DIGIT
LDX ISAVE RESTORE INDEX
LA A #$FF X
HOLO1 LDA B #$55 x
HOLD2 DEC B X
ENE HOoLD2 X WAIT
LDEC A X
ENE HOL D1 X
INX FOINT TO NXT CODE
CFX #FINAL+1
EEQ START RECYCLE
BRA NXTOIG GET NXT UIGIT
COOES FCR $03,$9F »$25y 500, $99
FCR $42y$41y$1F»$01,%19
FCE $11,$C0»$63r583r4%61
FINAL FCE $71
ENI

Figure 10-45
Program for outputting hex digits in
sequence and in a cyclic manner. Re-
quires program from Figure 10-43 as a
subroutine.

10-51

10-52

UNIT TEN

HEATHKIT
CONTINUING
_EDUCATION

Discussion

With each reduction in hardware, there is generally an increase in sup-
port software. The program in Figure 10-43 is used only to output the
necessary data bits to produce a single hex character. Since eight separate
address locations are needed to light the 7-digit segments and the deci-
mal point, the program must output eight bytes of data in order to
produce the desired display. This is accomplished by using the index
register to monitor each segment address and outputting the appropriate
data from the B accumulator.

Remember that only the D, data bit is connected to the display latch.
Thus, you can enter the appropriate 8-bit word (for the hex digit) into the
B accumulator and then write the word to the display, which only accepts
the D, bit. After the word is written, the B accumulator is rotated right,
which places the next most significant data bit (for the hex digit) at the D,
position. The index register decrements to the next segment address and
the program branches back to the store B accumulator step. This process
continues until all of the display latches are filled, then the branch step
defaults and the MPU goes into a wait for interrupt condition. The second
program you entered is similar to the previous cyclic character output
programs. At step 00010,,, a jump to subroutine instruction sends the
MPU back to the character output subroutine.

Procedure (continued)

35. Switch the Trainer power off. Then remove the hookup wire and
the components from the large connector block.

36. This completes this experiment. Return to the Unit Activity Guide
of Unit 7.

Interfacing Experiments

Experiment 5

DATA INPUT
OBJECTIVES:

Show how to construct a circuit for writing data to the microproces-
sor.

Demonstrate various methods for programming the microprocessor
to accept externally applied data.

Demonstrate a software routine for debouncing a switch.

Show how to select a debounce routine to fit a specific system.

Introduction

Experiment 4 introduced you to various methods of outputting data from
the microprocessor. In this experiment, you will learn how to input data.
While many devices can be used to transfer data to a microprocessor
(teletypewriter, tape reader, modem, transducer, etc.), they all ac-
complish their task in basically the same manner. You will use the
Trainer binary data switches and four external pushbutton switches for
data entry.

Materials Required

1

ET-3400 Microprocessor Trainer

#1 switch

#2 switch

#3 switch

#4 switch

7400 integrated circuit (443-1)
74126 integrated circuit (443-717)
74LS30 integrated circuits (443-732)
74LS27 integrated circuit (443-800)

Hookup wire

10-53

10-54

CONTINUING
UNIT TEN EDUCATION
ettt
TR;_\INFEAR ADBD%ECSKSS
_ Ay, A INTERFACE BL
S RIW VMA- 02 la "12 Ao
T DATA 1/0 TSC-j | lHl—l l AIS A13 A11 Agkg A7A6A5A4 A3AZAIAO
cocaow ogago ggoag ggaoo ggoag goaag goagag
‘ coaw cogo 111 (LX) poo0 111,
R5T-d §'—A Ling— l Lo,
TRAINER DATA
INTERFACE BLOCKS
D;0,DsD, Dy0,0,0p
(2 d2| (cooo
ta 0 [XX X] 5 1c-a8{ 4
6 1C-28 1452103
o] & | |
1C-1 2
11 3 [) 3

+5V

Program for inputting data from the

14126

w

1
12./71C-aA{13
s 2

A

T

V

N~
EELL

a
a
7

o0

oa
aa
54
BINARY DATA

SWITCH CONNECTOR
BLOCKS

Figure 10-47

binary data switches.

2
3. f1C-2A
700 |} 3

1C-3
741530

— I~

afulo ==

000 85— >
I: 18] 14] 14] 14|
IC-1 1Cc-2 1C-3 1C-4
14126 1400 74530 4521
443- | |aa3-1} | aa3-| | 445-
1n1 732 800
GND

FrrT S

Procedure

Figure 10-46
Circuit diagram of the first part of the
input experiment.

1. In the first part of this experiment, you will interface four slide
switches to the data bus of the MPU. Make sure the Trainer power is
switched off. Then construct the circuit shown in Figure 10-46.

2. Make sure all of the binary data switches are down (logic 0). Then

position switch 0 up to logic 1.

NOTE: You may have noticed that the display is faintly illuminated
with Trainer power off. This is caused by current from the data
lines being coupled through IC1 to the +5-volt connector block,
and from there to the displays. Disregard the display with power

off.

3. Switch Trainer power on and enter the program listed in Figure
10-47. Then execute the program beginning at address 0000 .

00001 NAM INFUT-01 REV, 0,2

00002 OFT NOF

00003 0000 R6 0OF80 .o A $0F80 GET DATA

00004 Q003 E7 Q100 STA A $0100 SAVE IT

00005 0006 3E WAT NONE

G0006 END

Interfacing Experiments 10"55

4. Examine address 0100,,. What is the contents? _ _.

5. Position data switch 0 down to logic 0. Then position data switch 1
up to logic 1.

6. Execute the program. Then examine address 0100,,. What is the
contents? _ _.

7. Position data switches 0 thru 3 up to logic 1.

8. Execute the program. Then examine address 0100,,. What is the
contents? _ _.

9. Enter the program listed in Figure 10-48.

10. Execute the program beginning at address 0000,;. Now flip data
switch 0 between logic 1 and logic 0 a number of times and observe
the decimal point of Trainer display H. Notice that the decimal
point is lit for a logic 1 and off for logic 0.

Discussion

Refer again to the circuit in Figure 10-46. It is quite similar to the one used
for outputting data. However, it operates like read only memory, with its
data being influenced by external sources, (the “outside world”).

Q0001 NAM INFUT-02 REV. 0.2
00002 oFT NOF

00003 QOGO Ré& OF80 REDO LA A $0F80 GET DATA
00004 0003 EB7 Cl1l67 STA A $C167 STORE IT
00005 0006 20 F8 BRA REDO GO BALK AGAIN
00006 ENID

Figure 10-48
Program to follow and display input
from data switch 0.

10-56

UNIT TEN

HEATHKIT
CONTINUING

EDUCATION

Bt et

=

The circuit is partially decoded as shown in Figure 10-49. When any of
the specified addresses is selected, the buffer drivers of IC1 are enabled
through inverter IC2A. This allows the data switch logic to be coupled to
the Trainer data bus buffers. As soon as the R/W line goes high (MPU
read), gate IC2B enables the input portion of the Trainer data bus buffers
through the RE line.

You may have noticed one flaw in the circuit. The buffers in IC1 are
always enabled when any of the circuit decoded addresses are selected.
Therefore, it is important that you as the programmer do not try to writeto
these addresses. If you did so, the buffers would try to source or sink the
data lines and result in possible circuit damage. One way to avoid this
problem is to disconnect pin 4 of IC3 from A; and connect it to the R/W
line. This will disable IC1 during an MPU write, but the circuit address
coding is now changed to 00001111¢++0000 .

Both programs in this experiment used address 0F80,4 as an input port.
The first retrieves data from 0F80,; and stores it at 0100,.

The second program also retrieves data from 0F80,,. But this time, it is
stored at C167,, the address of the decimal point for Trainer display H.
Since only the D, data bit is connected to the Trainer display, data switch
0 is the only switch to affect the display. The program continuously
branches back and retrieves switch data immediately after storing the
previous data. Thus, when you changed the position of data switch 0, the
decimal point appeared to follow the logic value of the changing switch
position.

Next, some additional hardware and software features will be added to
the circuit.

Als A1z A As A7 Ag A3 Ag
foToJolo] D[] 3 T<I=1<] [oJolo]o]
0 F 0

8-F

Figure 10-49
Decoding chart for the first input circuit.

Interfacing Experiments l 1 0"57

Procedure (continued)

1654 3210 BINARY DATA
L. . |9ogno :‘:aswnw
11. Refer to Figure 10-50 and construct the circuit shown. This circuit (2922 CONNECTOR BLOCKS
interconnects with the first circuit you constructed. Remember, the
pushbutton pins are fragile. Press straight down when you install —1 |

them in the large connector block, mounted on the Trainer cabinet. EXTERNAL o
PUSHBUTTON 3 2p 1

SWITCHES

12. Position all of the Trainer binary data switches up to logic 1.

13. Load the program listed in Figure 10-51, beginning at address

0000, (program step 00007).

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

00034
00035

0000

0000
0003
0006
0009
000R
000C
000E
0010
0012
0013
0015
0017
0019
001A
001C
001E
0020
0021
0023
0025
0027
002A
002D
002E
0030
0031
0034
0035
0036
0037
0038
Q039
0034

FE3A
FES2
FCRC

RL
EL
Fé
86
35

25
8L
86
56

r)s

8sn
86
56

e
s

an
86
56
25
sh
20
ED
CE
09
26
39
RD
00
00
00
00
00
80
39

0031
FCRC
OF80
30

02
17
6h

02
10
79

0z
09
33

i} 1]
02
ne
FE3A
0100

FO

FES

-

OUTCH
ODUTSTR
REDIS
ONE

TWO

THREE

FOUR

XECUTE

HOLLD

CLLRIIS

NAM
OFT
ORG
EQU
EQU
EQU
JSR
JSR
LIA
LoA
ROR
EBCS
BSR
LDA
ROR
RCS
BSR
LDA
ROR
BRCS
RSR
LoA
ROR
ECS
EBSR
ERA
JSR
LDX
LEX
BNE
RTS
JSK
FCE

RTS
END

¢ D

Flgure 10-50
Added circuitry for the data input ex-

periment.
KEYINDIC REV.0.2
NOF
0
$FE3A
$FES2
$FCRC
CLRIIS CLEAR DISFLAY ROUTINE
REDIS RESET DIGIT FOSITION (LEFT)
$0F80 LOONING FOR KEY CLOSURE
*#$30 RIT FATTERN FOR #1

MOVES "L0O® ERIT TO C REGISTER

TWO NOT ONE?T GO TO TWO
XECUTE OUTFUT A #1
#6600 BRIT FATTERN FOR #2

MOVES *"D1* RIT TO C REGISTER
THREE NOT TWO? GO TO THREE
XECUTE OUTFUT A #2

$$79 BIT FATTERN FOR #3

MOVES *D2" RIT TO C REGISTER
FOUR NOT THREE? GO TO FOUR
XECUTE OUTFUT A #3
$$33 BIT FATTERN FOR #4

MOVES "D3" BIT TO C REGISTER
ONE NOT FOUR? GO RACK TO ONE
XECUTE OUTFUT A #4
ONE RETURNy RECHECK FOR CLOSURE

QUTCH MONITOR ROUTINE OUTFUTS CHAR.
$$0100 ENTER TIMING LOOF

TIME RUNNING 0OUT
HOL I TIME QUT YET?

RETURNy RECHECK FOR CLOSURE
QUTSTR THE FOLLOWING CLEARS DISFLAY
00+,005,00+20+,00+%$80

Figure 10-51
Program to display the pushbutton

numbers in a sequential manner.

10-58

UNIT TEN

14. Execute the program beginning at address 0000,,. The decimal
point in display C will light to show the program is working.

15. Press one of the four pushbuttons and note the displayed result.
16. Simultaneously press any two pushbuttons and note the result.
17. Simultaneously press any three pushbuttons and note the result.

18. Simultaneously press all four pushbuttons and note the result.

Discussion

The four pushbuttons in this experiment simply provide a convenient
substitute for the four Trainer data switches. You could obtain the same
result by manipulating the data switches. However, the pushbuttons will
be needed in the next portion of the experiment.

The program shown in Figure 10-51 makes extensive use of the Trainer
monitor routines located in ROM. These include OUTCH, OUTSTR, and
REDIS. An earlier programming experiment showed how to use these
routines.

Recall that OUTCH outputs a 7-segment code from accumulator A to the
display indicated by a display pointer. OUTSTR outputs a string of
characters to the displays. REDIS resets the display pointer so that the
first character displayed by OUTCH or OUTSTR is in display H.

In addition, the program has two subroutines of its own. CLRDIS (for
clear displays) is in addresses 0031,5 through 003A ;6. It uses OUTSTR to
clear the six displays. XECUTE is in addresses 0023, through 0030. It
uses OUTCH to display a character and then goes into a short delay.

The program starts at address 0000,¢. The first instruction jumps the MPU
to the CLRDIS subroutine. After the displays are cleared, the MPU returns
to the instruction at address 0003 . This instruction directs the MPU to
the REDIS subroutine. This sets the display pointer to display H.

The MPU returns to the instruction in address 0006,,. Pushbutton data is
now loaded into the B accumulator. Next, the 7-segment pattern fora “1”
is loaded in the A accumulator. The D, bit in the B accumulator is
examined. If it is a one (#1 pushbutton not pressed), the program
branches foward to TWO. If the D, bit is a zero, the program branches to
XECUTE. XECUTE displays the 1 in display H.

—_——
HEATHKIT
CONTINUING
EDUCATION

Interfacing Experiments

After XECUTE, an RTS sends the program back to address 0010,5. The A
accumulator is loaded with the bit pattern for the digit “2”. Then the B
accumulator is again rolled right to test for a #2 pushbutton actuation. If
#2 was pushed, it will be displayed; otherwise, the program will advance
and test the remaining pushbuttons.

The pushbuttons that test true determine the numbers displayed. How-
ever, the display pointer determines the display that contains the
number.

After all of the pushbuttons have been tested, the display is cleared and
the display pointer again points to display H.

In many applications, the MPU constantly scans the input switches
looking for input data. However, in some applications this would waste
too much of the MPU’s time. A better approach is to let the MPU ignore
the keyboard until a key is depressed. This is possible through the use of
interrupts. In the next part of the experiment you will see how a keyboard
can control the MPU through the interrupt line. You will also see how a
debounce subroutine works.

Procedure (continued)

19. Switch the Trainer power off. Then refer to Figure 10-52 and add
the circuit shown to the circuit already wired to the Trainer. There
should be enough room near the left end of the large connector
block “on board’ the Trainer to hold the additional 74L.S30. Notice
that the inputs to the 74LS30 are connected in parallel with the data
lines leaving the four pushbutton switches. IC2C is one of the
unused gates in IC2.

0]

WMT—

gooon

No—22 oosa
N, il vma < | LmrrT

3
NC— 1c-5 \8 9

4530 1c-2¢ \3
3} 10| 7400

SWITCHES

l

ow

1
o

O

74LS30
443 -

GND 732

Figure 10-52

4
2 1
1 |
l WTERNAL E?.}—Tq Interrupt circuitry for data input ex-
(o]

PUSHBUTTON 1c-5 periment circuit.

10-39

10-60

UNIT TEN _EDUCATION

20. Switch Trainer power on. Then refer to Figure 10-53 and enter the
program listed beginning at address 0000,¢. Notice that after you
enter the 3B, at address 002B,s, you must go to address 00F7 4 to
enter theremaining data. 002C and 002D, are temporary registers.

21. Now enter 00,5 into address 0100 thru 0110,,. These addresses are
used as data storage registers.

22. Execute the program beginning at address 0000,,. The display will
go blank.

23. Strike each pushbutton sequentially ina 1, 2, 3, 4 order. When you
strike each button, use a moderate force, such as you would use
when typing with a mechanical typewriter. The data you entered is
stored in memory and will not be displayed.

00001 NAM DROUNCEYL REV. 0.4

00002 OFT NOF

Q0003 OF80 INFUT EQU $QF80

00004 0000 OE CL.I REALNY FOR INTERRUFT
20005 0001 CE 0100 FPROGRA LDX ¥$0100 FOINT TO STORAGE

00006 0004 01 NOF X

Q00007 0005 01 NOF X LOCATION FOR FROGRAM
00008 0006 20 F9 ERA FROGRA X

Q20009 0008 Ré6 OF80 GETIDAT LA A INFUT GET DATA

Q30010 O00OE E1 002C CMF A TEMF I8 IT LIKE REFORE®?
Q0011 000E 27 07 REQ SAME IF 80y G50 TO SAME
20012 0010 R7 002C STA A TEMF IF NOTy STORE IN TEMF
J0013 0013 7F 002D CLR COUNT RESET COUNTER TO ZERO
00014 0016 3E RTI

Q20015 0017 Cé6 40 SAME LIad B #%40 NUMERER OF CHECKS

Q30016 0019 F1 002D CMF B COUNT ENOUGH CHECKS YET®
00017 001C 27 04 REQ LEGAL IF S0,GO TO LEGAL
00018 0O0L1E 7C 002@ INC COUNT IF NOTyINCREMENT COUNT
00019 0021 3R RTI

00020 0022 43 LEGAL COM A INVERT LOGIC

00021 0023 A7 00 STA A X FLACE IN STORAGE

Q0022 0025 7F 002I CLR COUNT RESET COUNTER TO ZERO
Q0023 0028 08 INX FOINT TO NEXT STORAGE FLACE
QG024 0029 DIF 02 STX FROGRA+1 SAVE I DURING RTI
00025 O00O2E 3R RTI

00026 002C 0001 TEMF RME 1

Q0027 0020 0001 COUNT RME 1

20028 O0F7 ORG $QOF7 INTERRUFT VECTOR

00029 O0F7 7E 0008 JMF GETDAT

00030 END Figure 10-53

Program to software debounce the
input pushbuttons.

24.

25.

26.

27.

28.

29.

30.

31.

Interfacing Experiments 1 0'61

Examine address 0003,. It should contain 04,, which is the
number of pushbutton contact closures made. Change the contents
back to 00.

Examine addresses 0100 thru 0103,,. They should contain 01, 02,
04, and 08, respectively. Change the data in these four locations
back to 00, Even though the pushbuttons are labeled 1, 2, 3, and 4,
they are connected to data lines D, D,, D,, and D;. Therefore, the
switches will enter the binary values 1, 2, 4, and 8.

Execute the program. Then press each pushbutton twice in succes-
sion (1, 1, 2, 2, 3, 3, 4, 4). Address 0003, now contains 08,
representing eight pushbutton contact closures. Enter 00,4 at ad-
dress 0003 .

Examine addresses 0100 thru 0107 5. They will show the value of
each pushbutton pressed and the sequence it was pressed. Change
the data in these address back to 00.

Examine address 0018,. It should contain data 40,;. Change the
value to 00.

Execute the program. Then press each pushbutton once in sequ-
ence.

Examine address 0003 ,; and record the contents. _ _,5. This number
should equal 04,,. However, it may be higher.

Record the data in the following addresses. You need only examine
the number of addresses that correspond to the value recorded in
step 30.

0100 _ _ 0109 _ _
0101 _ _ 010A _ _
0102 _ _ 010B _ _
0103 _ _ 010C _ _
0104 _ _ 010D _ _
0105 _ _ 010E _ _
0106 _ _ 010F _ _
0107 - _ 0110 _ _

0108 _ _

10-62

UNIT TEN

Discussion

IC5 and gate IC2C provide an interface between the four external
pushbuttons and the interrupt request line (IRQ). The remaining circuitry
functions as before. Thus, whenever you attempt to enter data with the
pushbutton switches, a request for program interrupt signal is sent to the
microprocessor.

The program listed in Figure 10-53 processes the interrupt and de-
bounces the keys. The program is actually two programs in one. The first
part (steps 00005 through 00008) serves as a “‘simulated” program that
runs in an eternal loop until it is interrupted. The remaining program
steps actually service the input data pushbuttons during the interrupt.
This is the program we will deal with.

Figure 10-54 is a flow chart for the interrupt program. The numbers at

- each block represent the assembled program steps.

1299 INTERRUPT

GET
19 INPUT
DATA

lN|FSUT 0 STORE
N
H0-1DC SAME AS | 'N’;?J‘P'N
INCREMENT
15-17) Count o fum ?;Ep’t"r
L
STORE a9 RTI (4 RTI
20-21] INPUT IN
MEMORY
CLEAR COUNT
-2
222307 Ten INX
SAVE INDEX Figure 10-54
(281 REGISTER L.
BEFORE RTI Flow chart for interrupt routine in the
] debounce program.
1251 RTI

Interfacing Experiments 10‘63

When the MPU receives an interrupt request; it completes the instruction
it is presently performing, loads the internal registers and accumulators
into the stack, sets the interrupt mask in the condition code register, then
examines ROM to find out where the program counter is to be vectored.
The vector address instruction sends the program counter to the begin-
ning address of the interrupt program.

Pushbutton data is loaded and compared to the data in the temporary
register (address 002C,). Since this is the first time data is examined,
there can be no match. Therefore, the pushbutton data is stored in the
temporary register, the counter register (address 002D,g) is reset, and the
MPU returns to the original program. This is the first time the MPU looks
at the pushbuttons during the debounce routine. The data in the tempor-
ary register will serve as the reference for all future interrupts. If the input
data changes, this new data will be entered, and the counter register will
bereset. The counter is used later in the interrupt program to monitor the
number of data examinations performed.

Upon return from the interrupt program, the MPU pulls the accumulator
and register data from the stack. This clears the interrupt mask, and since
you still have the pushbutton pressed, the MPU immediately acknow-
ledges the interrupt request. Whereupon, it stores into the stack, sets the
mask, and looks up the interrupt vector.

Pushbutton data is again compared with the temporary register. This
time, it matches. Thus, allowing a branch to address 0017,,. Data 40,4 is
loaded into the B accumulator and then compared with the count regis-
ter. Since the count is zero, there is no match. Therefore, the count is
incremented and the MPU returns to the main program.

Assuming you are still holding the pushbutton down, the MPU goes
through the interrupt routine 38 more times (39 total). During the 40
cycle, if the data is still good, the MPU will be satisfied that the data
supplied by the pushbutton is true, and the program is allowed to branch
to address 0022 .

The contents of accumulator A (pushbutton data) is complemented and
stored at the address pointed to by the index register. This address was
loaded into the index register in the main program. It is the first of 17,
addresses you reserved for data when you performed the experiment.

The counter register is cleared (in case the same pushbutton is again
pressed). The index register is incremented and stored at address 0002 .
This points to the next data address, in preparation for the next pushbut-
ton closure. Finally, the MPU returns to the main program.

1 0-64[UNIT TEN

You may have wondered why the pushbutton data was complemented
before storage (address 0022). This was necessary since the pushbuttons
were wired using inverse logic. That is, when the #1 pushbutton was
pressed, data 1111 1110, was transferred on the data bus, rather than 0000
0001,. Thus, it was necessary to invert the data for “logical’”’ interpreta-
tion.

In the second part of this portion of the experiment, you changed the
number of data examinations from 40,; to 00,; (address 0018,5). Then
when you entered four pushbutton closures, you probably found more
than four entries stored at address 0003, This occurred because the
contacts of a switch tend to bounce open and closed a number of times
before they stay closed. Since the bounce period can last many mil-
liseconds, the MPU could treat each bounce as a separate entry, as you
probably experienced.

Again look at the data you recorded in step 31. As you know, the program
is designed to store one pushbutton closure in each address. A series of
two or more identical entries indicates bounce. You may even have one or
two zeroes recorded. This occurred because the contacts opened after an
interrupt request, but before the data could be tested. Thus, a zero is
stored.

Contact bounce can not be tolerated. But, what is a desirable number of
switch samples? This will depend on the type of switch. If the sample is
too low, bounce can occasionally get through. Large samples waste time
and may require long switch hold-down periods. Normally five to eight
samples are sufficient for a program of the type you used in this experi-
ment. However, some switches will produce excessive bounce. As a
precaution, 40 samples are used in the program.

Your Microprocessor Trainer uses a similar software routine for key
debounce. This is stored in its ROM. Another method for debouncing a
switch is to use cross-coupled NAND gates. They latch on the first closure
and any additional bouncing is ignored. Regardless of the method used,
you must debounce any mechanical switch used for data entry.

If you experiment with the sample rates in the program you entered,
always be sure to change the data at addresses 0003,; and 0100 through
0110, to 00, before you execute the program.

Procedure (continued)

32. This completes this experiment. Switch the Trainer power off.
Then remove all of the hookup wire and components from the two
large connector blocks.

~

Interfacing Experiments

Experiment 6
INTRODUCTION TO THE
PERIPHERAL INTERFACE ADAPTER (PIA)
OBJECTIVES:
Show how to interface the MPU with the outside world using a PIA
(6820).

Demonstrate various ways the PIA can be initialized as an input,
output, or input/output (I/O) device.

Introduction

As you have seen in the previous experiments, the need for latches and
drivers to communicate with the MPU from the outside world can be-
come quite burdensome. Then, once you have established a hardware
interface circuit, you can not easily modify its function. However, the PIA
can simplify your interface requirements in such a way that standardiza-
tion is possible regardless of application. Therefore, you can easily de-
velop interface systems compatible with your hardware and software
needs. This is possible because most of the PIA performance charac-
teristcs are software controlled. Thus, performance and design features
can be modified with little difficulty. In this experiment, some of the
PIA’s characteristics will be examined.

Material Required

1 ET-3400 Microprocessor Trainer

2 1000 ohm, 1/4-watt, 10% resistors

1 7400 integrated circuit (443-1)

1 74LS30 integrated circuit (443-732)

1 74LS27 integrated circuit (443-800)

1 6820 PIA integrated circuit (443-843)

Hookup wire

10-66 [UNIT TEN

Procedure

1. Make sure the Trainer power is off. Then construct the circuit
shown in Figure 10-55. Caution: The PIA is a MOS device and
should be handled properly.

2. Carefully reexamine the circuit you constructed. There should be a
wire connected to each lead of the PIA.

DATA 170 TRAINER DATA N1 4 [AT TSCq [RIW
INTERFACE BLOCKS oo 5oool
07040504 03020100 osga °°I
oooa ooaa vl I 5
(111 L LLL1EN ALz l___AQ ‘ S
10
Als A3 Ay} AgAg A7AgAsAy A3A2A1Aq
cooo coao coaa ooaa
sepy soaao ocooo L1
TRAINER
ADDRESS
s s 4 3 zZ 1 o 106> g) INTERFACE
1], R BLOCKS
12 28
* e *
Bl, en W0
14, 20
5], Bl
16}, 32
- 11 pg7 LY EX]
CONNECTOR BLOCKS +5v 1251 ¢ 23 3/ 1c-3A -
Y 1000 18] €521 0 |2
1a-w [mosﬂ—l
€82 rgoafd
1000 40 11
va-w o] M cstd 8/1c-ac[T0
CA2 4527\ 9
9
2 IPAT resETid
7 12 4 lia
2 2/7C-4A[2
5], Cso 7aus21 (]
ide 3
AN RS1g=
RSO
21- RI
PAO LL|
Y'Y SO BB]BINARY DATA 2
caoao agggjsWitch 3
T3 T35~ CONNECTOR BLOCKS 4 e \8
3] 1aLs30
6
oco »> - »- N.C.—
5 of 14 uf 14 N.c.—-Ll‘z
ic-1| Jic-2] fre-3] |ic-a N.C.—=
6820 | |rasso| | ra00 | frasa
a3 | aas- | Jaas-1f Jass-
843 132 300
GND 1] 7] 1
gao

Figure 10-55

Circuit diagram for the first PIA experiment.

Interfacing Experiments 10'67

3. Switch the Trainer power on. Then enter the program listed in

Figure 10-56.

4. Setall of the binary data switches to their down (logic 0) position.
Then execute the program. The display will go blank.

5. Randomly set the data switches and observe the data LED’s. Notice
that the LED corresponding to each switch follows the logic level of
the switch.

6. Change the instruction at address 0017, to 43 .

7. Execute the program and again randomly set the data switches.
Notice that the data LED’s now show the complement logic level of

the switches.

8. Refer to Figure 10-56 and briefly describe the ‘“service routine”

section of the program.

00001
¢0002
00003
00004
00005
00006
0007
0008
00009
00010
00011
(10100 Bt
(0013
00014
00015
00016
00017

0000
0002
0003
0007
000A
000C
000F
0011

0014
0017
0018
0O01E

86
&7
86
R7
86
EB7
86
B7

Ré
01
B?
20

00
8000
04
8001
FF
8002
04
8003

8000

8002
F7

NAM FIA-EXF1
OFT NOF
XINITIALIZE FIA
LA A #00
STA A $8000
LA A #04
STA A $8001
LOA A ¥$FF
STA A $8002
LA A %04
STA A $8003
XSERVICE ROUTINE
RESERV LDA A $8000
NOF
STA A $8002
EBRA RESERV
END

Figure 10-56

Program to initialize and use the PIA

for data input and output.

REV. 0.2

0=INFUT
A SIDE NOW INFUT
SET TO COMMUN,

1=0UTFUT

B SIDE NOW OUTFUT
SET TO COMMUN,
GET DATA

STORE TO OUTFUT
00 IT AGAIN

10-68

UNIT TEN

Discussion

By now you are quite familiar with address decoding. Therefore, the
discussion will deal with the PIA. Figure 10-57 is a decoding chart for the
circuit you wired to the Trainer. If during this discussion you don’t fully
understand a specific function of the PIA, refer to the PIA section in Unit
8 and the PIA data sheet in Appendix B.

(o6 LT CILl) PRER]
X

8 0-7 0-F

Figure 10-57

Decoding chart for the circuit in Figure 10-56.

Three chip-select pins on the PIA provide for easy decoding. They help
eliminate address decoding gates. In small systems where partial address
decoding can be tolerated, these three pins may be all that is needed to
access the device. Notice that the PIA responds to addresses 8000
through 8003 .

The reset pin clears the PIA registers and is normally used at system
turn-on. Therefore, it is connected to the system reset line.

The read/write pin controls data flow direction in the PIA in a manner
similar to the RAM. Thus, it is connected to the R/W line from the MPU.

Interrupt request lines A and B can be wire OR’ed as in this experiment.
Thus, each can transmit an MPU interrupt on the NMI or IRQ lines (in this
experiment, the feature is not used).

Control pins A1 and B1 are inputs that are used to control the internal PIA
interrupt flags. Control pins A2 and B2 can also serve as interrupt inputs
or as peripheral control outputs. Since these features are not required for
this experiment, each pin is pulled to a logic 1 to provide a termination
and prevent undesired PIA interrupts.

The enable pin controls data transfer between the PIA and MPU. Since
MPU data transfer occurs during time (2, this pin is connected to Trainer

p2.

Interfacing Experiments 1 0‘69

Data pins 0 through 7 are connected to the MPU data bus for device
communication.

Peripheral pins A0 through A7 can be programmed as inputs or outputs. .

In this experiment, they are programmed as inputs and are connected to
the binary data switches.

Peripheral pins BO through B7 can also be programmed as inputs or
outputs. In this experiment, they are programmed as outputs and are
connected to the data LED’s. Normally, the B side is used as an output
because of its extra drive capabilities.

Asyou learned in Unit 8, the PIA must beinitialized before it can function
properly. This is accomplished through a software routine. Because
initialization is accomplished by software, the PIA’s operation can be
modified at any time during the program.

When the PIA receives a reset pulse, its six memory accessible registers

- arecleared. Thus, whenever the Trainer RESET key is pressed, the PIA is

reset. Because of this, the PIA must be initialized after each reset.

The program you entered (Figure 10-56) used the instructions in address-
es 0000 through 0013 to initialize the PIA. This programs the A side of
the PIA as an input. Then, 04,5, was loaded into control register A. This
sets bit 2 of the control register high, which isolates the data direction
register and accesses the output register.

In a like manner, the B side of the PIA is set up as an output by loading
FF, into the data direction register. Then the data direction register is
isolated and the output register accessed by loading 04 into the control
register.

The remaining steps in the program comprise the service routine. The
MPU reads data from the A side of the PIA and stores it to the B side. The
“branch always” instruction holds the program in the service routine.
Once the PIA is initialized, it will function as programmed until it is
reset.

When you changed the instruction at address 0017, to 43,5, you in-
structed the MPU to complement the data in the A accumulator before
storing the data.

10-70 l UNIT TEN

00001
00002
00003
00004
00005
00006
00007
00008
00009
0010
00011
00012
00013

The program listed in Figure 10-58 is the same as the program you used,
with one exception; the index register is used in place of the A ac-
cumulator for initializing the PIA. This reduced the number of program
steps required.

Procedure (continued)

9. Donotdisassemble the circuit you have wired to the Trainer. It will
be used in the next experiment. Proceed to Experiment 7.

NAM FIA-EXF2 REV. 0.2
OFT NOF
XINITIALIZE FIA
0000 CE 0004 LoX $#$0004
0003 FF 8000 STX $8000
0006 CE FFO4 LIX #$FFO04
0009 FF 8002 STX $8002
XSERVICE ROUTINE
000C BRé6 8000 RESERV LIA A $8000 GET DATA
000F 01 NOF
0010 R7 8002 STA A %8002 STORE TO OUTFUT
0013 20 F7 EBRA RESERV 00 IT AGAIN
END

Figure 10-58

Alternate program to initialize the PIA
for data input/output.

Interfacing Experiments 1 0‘71

Experiment 7

AUDIO OUTPUT
OBJECTIVES:

Show how a transducer can be interfaced with an MPU.

Provide an opportunity to write an output program that will supply
the data to drive a speaker.

Demonstrate how different audible tones can be generated.

Introduction

With the proper interface, microprocessors are capable of producing
meaningful audio sounds. These signals are often useful as indicators
when the operator cannot monitor the display and would like to know
when an event has occured.

Audible sounds can be produced in two ways. The first simply uses a
buzzer that is activated by a change in output logic level, in the same
manner as an LED. The second method actually drives an audio speaker.

This experiment will use the second method to produce a variety of
meaningful tones.

Materials Required

1 ET-3400 Microprocessor Trainer with PIA circuit wired to the large
connector block

2 100 ohm, 1/2-watt, 10% resistors

1 100 uF electrolytic capacitor

1 Speaker
Foam tape (from previous experiment)
Solder (from Trainer kit)

Hookup wire

HEATHIIT
NG

- CONTINUI
10-72| uniTTen Bucanon
Procedure
1. Cut two 14” hookup wires and remove 1/4” of insulation from the
- ends of each wire. Then twist the wires together, leaving about 2”

FOAM TAPE untwisted at each end.

2. Remove the speaker from its packing container. Then refer to Fi-
gure 10-59 and solder the two wires at one end of the 14" twisted
wire pair to the two speaker terminals. Disregard any polarity
marks on the speaker.

3. Cuta 3/4” x 3/4” piece of foam tape. Remove the paper backing from
one side and press the tape onto the end of the magnet on the
speaker. Then remove the paper backing from the other side of the
tape and affix the speaker to the sloping back of the Trainer cabinet
near the Power switch. Position the speaker lugs up away from the
Trainer.

4, Switch the Trainer power off. Remove the eight wires interconnect-
ing the data LED’s and PIA. Then remove the eight wires intercon-
necting the binary data switches and PIA.

5. Refer to Figure 10-60 and construct the circuit shown. Connect the

speaker wires and the capacitor to the unused large connector

Figure 10-59 block. (Additional components will be added later in the experi-
Speaker preparation. ment.) The gate is part of IC3 in the original circuit. You can use pin

7 of IC3 for speaker ground. Figure 10-61 shows the complete
circuit wired to your Trainer.

TO
PIN 10

‘ 6 100uF
O ic-38
A D}T‘ SPEAKER

Figure 10-60
Speaker/PIA interface circuit.

O Y w3y 1 (INCHES) 2 3 4 S 6 7
(NN IR N TSI SRR SRR RN SIS AV SS U R SRS ST ST
laazsasanaa LS e | S e s e e s e iy T (S e S B e Sy e
0O 3 1+ (M 2 3 - s [} 7 8 9 10 1" 12 13 14 18 18 17

_EDUCATION Interfacing Experiments 10'73

D",” 1o TRAINER DATA NMT 4 [FATT TSCq [RIW
INTERFACE BLOCKS T =o5C
D7060504 03020100 ogpwa .—Tnn
Id,
oooo oooo vMA| liRQ RS T |
111, sese| — ‘ 8K ‘
14 Al 10
Als A3 A1l AgAs A7AgAsAg A3A2A1Ag
oooo oooo oooo oooo
SRy go0o0 oooo L LLL)
TRAINER
5 " s ADDRESS
9 4
00uF PBO D7 INTERFACE
100uF e ¢ -3 Jz BLOCKS
* 700y PSR 4
SPEAKER s 22
.30
2
132
Do 33
1
L2 g ¥ 3/ 1c-3A
Heol ragll 0 12
CB2 TROA Aas].
11
CAl csil2e 8 /Tc-acf10
CA2 741527 {9
RESETRL
" 13
22 Tc-aal 2
€so 71527 {12
"
RS 2
RSOPSS
RIW
LL]
2
3
Alic2 \8
5474530
uuur} o>- > N.C.—
—J 7] 1] 1] 14 N.C.—HH
T o L2
ic-1 Ic-2 1C-3 IC-4 N.C.

6820 74LS30 7400 aLsa1

443 - 443 - 443-] 443 -
843 732 800

Croh e

Figure 10-61
Circuit diagram for the audio output

experiment.

10-74

UNIT TEN

6. Switch the Trainer power on. Load the program listed in Figure
10-62. Begin at address 0003 ¢ (line 00008). Notice that a number of
program steps have no data entry. Also, lines 00027 ,; and 000524
contain assembler equate statements and should be ignored. After
you enter 20,4 at address 004B 4, go to address 00F7 4 to enter 3B .

7. Press RESET, then install a hookup wire between LINE and IRQ.
This wire is not shown in the circuit diagram.

8. The program you entered is for a clock function. Addresses 0000,
0001, and 0002 4 are reserved for the seconds, minutes, and hours
of the clock respectively. Enter the desired time into these three
addresses.

9. Execute the program beginning at address 0003 .. Each time the
seconds count updates, you should hear a “tick” from the speaker.

Discussion
HARDWARE

Gate IC3B supplies the current needed to drive the speaker, while the 100
wF capacitor protects the gate. If the program stopped during a logic high
output, the speaker would act as a direct short to ground. The capacitor
coupling prevents this possibility. A side benefit of the capacitor is the
RC time constant it forms with the internal gate circuitry. The pulse
width for logic 1 and logic 0 transitions is different, producing a *‘tick-
tock’” sound.

SOFTWARE

The clock program you entered is very similar to the clock program from
Experiment 2. Two instructions were added to initialize the PIA (lines
00008 and 00009). Also, a store instruction was added to the 60-second
timer subroutine (line 00022).

The store instruction outputs the seconds digit information to the PIA (B
side) every time the digit increments. Since the D, data bit is the only bit
that changes during each time update, only peripheral output PBO (pin
10) is needed to supply speaker data.

If you have any questions concerning the clock program, refer to Experi-
ment 2.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00013
00016
00017
20018
20019
20020
00021
00022
Q0023
20024
Q0025
Q0026
00027
00028
00029
20030
00031
Q0032
20033
00034
00035
00036
00037
00038
00039
00040
00041
30042
00043
00044
00045
00046
00047
00048
00049
00050
000351

20052
- 00083
00054
00055

Interfacing Experiments

0000
0001
0002

0003
0006

0009
000C
ooo0n
000F
0010
0011

0013
0015
0016
0018
001A
0oo1n
O01F
0021
0023

0026
0028
002A
002C

002E
0030
0032
0033
0034
0036
0037
0039
003A
Q03K
003I
003E

003F
0040
0042
0044
0047
0049

00F7
O0F7

0001
0001
0001

CE
FF

CE
09
27
OE
3E
20

Cé
on
an
Y6
B7
8D
Cé
8n
RD

FFO4
8002

0030

04

Fe
60

16
Q0
8002
OF
13
OR
FCRC

FCRC

80
8L
8n
20

A
89
19
11
25
4F
A7
08
07
88
06
39

09
?6é
26
7C
AL
7E

17
1%
13
IOE

00
00

01

00

01

02
03
0002
00
FE20

FEZ20

3k

NAM CLOCK~-3 % REV 0.2
XKL INE ACCURACY CLOCK FROGRAM
OFT NOF
SECONDN RME 1
MINUTE RMR 1
HOURS RME 1
% FIA INITIALIZATION
LoX F¥EFFC4
STX $3002
X¥ INTERRUFT HANDLING
TIMFAS LIX #4003 &1
ONE&OT DEX TIME TICKING OFF
REQ TIMEUF 60 FULSES YET?
CLI
WAI WAITING
ERA ONESOT GO BACK & WAIT AGAIN!
% INCR ONE SECOND AND UFDATE
TIMEUF LA B #%60 SIXTY SECONDG,SIXTY MINUTES
SEC ALWAYS INCREMENT SECONDS
ESR INCR INCREMENT SECONDS

REDIS

Xk INCR
INCR

INC1

X% FRIN
FRINT

CONTIN

QUTRYT

LId A SECOND
STA A $8002

BSKR INCR INCREMENT MINUTES IF NEEDED
LA B #$13 TWELVE HQUR CLOCK
BSHR INCR INCREMENT HOURS
JER REDRIS RESET LISFLAYS
EQU $FCRC
BSR FRINT
RSR FRINT
ESR FRINT FRINT HOURSYMINUTESySECONDS
EBRA TIMFAS 0O IT ALL AGAIN
- INCREMENT SUERROUTINE
LI A 09X NATA WORD INTO A
AlC A %0 INCREMENT IF NECESSARY
[AA FIX TO DECIMAL
CERA TIME TO CLEAR?
ECS INC1 NO
CLR A
STA A OsX
INX
TFA
EOR A #1 COMFLEMENT CARRY ERIT
TAF
RTS
T - FRINT HEX RYTES
LEX FOINT X AT RYTE
LA A $02 WHAT’S IN HOURS?
BNE CONTIN IF NOT ZERO
INC HOURS MAKE IT ONE
LA A 09X
JME QUTRYT
EQU $FE20 MONITOR ROUTINE
g‘;\? $00F7 Figure 10-62
ENII Clock program with audible tick-tock.

10-75

10-76 L UNIT TEN

HEATHKIT

CONTINUING
EDUCA

Procedure (continued)

10. Switch the Trainer power off. Then remove the wire interconnect-
ing LINE and IRQ. Switch the Trainer power on.

11. Write a program that will output the proper data to produce an
audio tone from the speaker circuit. This program must: Initialize
the PIA, alternately store 1's and 0’s to the speaker in order to
produce a tone, and provide a delay loop between each storage, to
determine the frequency of the tone.

12. Execute the program.

Discussion

Figure 10-63 shows a program similar to the one you wrote. Notice that
only two instructions were required to initialize the PIA. This is possible
since only the B side will be used to output data.

Remember from the previous program, it is only necessary to change the
D, bit of the output data, since that is the only bit connected to the speaker
circuit. Therefore, you can start with a random number in the A ac-
cumulator (line 00007) and store the number to the PIA. After a short
delay (lines 00008 thru 00010) the A accumulator is incremented (chang-
ing the D, bit logic level) and again stored to the PIA. This incrementing
and storing of accumulator A can continue indefinitely since the only
data of interest is the D, bit.

C&‘I(“Aml’w interfacing Experiments
00001 NAM TONETEST REV. 0.2

00002 oFT NOF

00003 KINITIALIZE FIA

00004 0000 CE FFO4 LnX $$FFO04

00005 0003 FF 8002 STX $8002

00006 XKFRODUCE TONE

00007 00046 B7 8002 ALTERN STA A $8002 QUTFUT BIT

00008 0009 Cs S5 LA B #$55 DETERMINES FREQUENCY
00009 CQOOR 5A TONE DEC R

00010 000C 26 FI ENE TONE

00011 000E 4C INC A COMF. EBIT

00012 000F 20 F3 BRA ALTERN

00013 END

Figure 10-63

Program to output a tone through the speaker.

Procedure (continued)

13. Enter the program listed in Figure 10-64. After you enter F1, at
address 0024,4, go to address 0101,5 and enter the remaining data
bits. Notice that the program covers two pages. This listing second
page has been condensed to show only the assembled program line
numbers, addresses, and data. The data in addresses 000D and
000E controls the time of each note. The number in parentheses is
for the fast clock. The number in addresses 0101 through 01BF
determine the pitch, or frequency, of each note. Once more, the

numbers in parentheses are for the fast clock.

14. Execute the program beginning at address 0000,,. Notice that after
the program completes the song, there is a pause (of equal duration

to the song) before the song repeats.

10-77

10-78

CONTINUING
UNIT TEN EDUCATION
—————

00001 0107 53 (9D)
00002 0000 0108 42 (7C)
00003 0000 7F 8003 CLR 0109 53 (9D)
00004 0003 7C 8002 INC 00023 0104 42 (7C)
00005 0006 73 8003 COM 010B 53 (9D)
00006 0009 8E 0100 LDS 010C 42 (7C)
00007 000C CE O5FF (OCFF) LDX 010D 37 (69)
00008 0O0OF 33 PUL B 010E 42 (7C)
00009 0010 5D TST B 010F 37 (69)
00010 0011 27 ED BEQ 0110 42 (7C)
00011 0013 F7 0100 STA B 0111 37 (69)
00012 0016 4C INC A 0112 42 (7C)
00013 0017 F6 0100 LDA B 00024 0113 37 (69)
00014 001A 09 DEX 0114 42 (7C)
00015 001B 27 EF BEQ 00025 0115 22 (41)
00016 001D 5A DEC B 0116 2B (52)
00017 OO1E 26 FA BNE 0117 22 (41)
00018 0020 B7 8002 STA A 0118 2B (52)
00019 0023 20 F1 BRA 0119 20 (3D)
00020 0100 ORG 011A 29 (4D)
00021 0100 0001 011B 20 (3D)
00022 0101 53 (9D) 011C 29 (4D)

0102 42 (7C) 00026 011D 20 (3D)

0103 53 (9D) 011E 29 (4D)

0104 42 (7C) 011F 20 (3D)

0105 53 (9D) 0120 29 (4D)

0106 42 (7C) 0121 20 (3D)

Figure 10-64
Music program (Part 1 of 2).

Interfacing Experiments 10'79

0122
0123
0124
0125

00027 0126

00028

00029

00030

0127
0128
0129
0124
012B
012C
012D
012E
012F
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
013A
013B
013C
013D
013E
013F
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149

29
20
29
20
29
20
29
20
29
20
29
20
29
20
29
2B
37
2B
37
24
2B
24
2B
29
37
29
37
42
37
42
37
42
37
42
37
3A
46
3A
46
3E

(4D)
(3D)
(4D)
(3D)
(4D)
(3D)
(4D)
(3D)
(4D)
(3D)
(4D)
(3D)
(4D)
(3D)
(4D)
(52)
(69)
(52)
(69)
(45)
(52)
(45)
(52)
(45)
(69)
(45)
(69)
(7€)
(69)
(7€)
(69)
(7€)
(69)
(7€)
(69)
(6E)
(84)
(6E)
(84)
(75)

00031

00032

00033

00034

00035

014A
014B
014cC
014D
014E
014F
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0154
015B
015C
015D
015E
015F
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
016A
016B
016C
016D
016E
016F
0170
0171

4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
4A
3E
5B
3E
58
3E
58
3E
58
3E
38
3E
58
37
4A
37
4A
37

(75) 00036

(8C) 00037

(75) 0oo3s8

(AT) 00039

(69) 00040

Figure 10-64

0172
0173
0174
0175
0176
0177
0178
0179
017A
017B
017C
017D
017E
017F
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
018A
018B
018C
018D
018E
018F
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

Music program (Part 2 of 2).

4A
37
4A
31
3E
31
3E
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
2B
37
31
3E
31
3E
37
42
37
42
3A

(8C)
(69)
(8C)
(5C)
(75)
(5C)
(75)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(52)
(69)
(5C)
(75)
(5C)
(75)
(69)
(7€)
(69)
(7€)
(6E)

0194
019B
019C
019D
019E
019F
0140
01A1
00041 01A2
01A3
01A4
01A5
0146
01A7
01A8
0149
01AA
00042 01AB
01AC
01AD
01AE
01AF
01B0
01B1
01B2
01B3
00043 01B4
01B5
01B6
01B7
01B8
01B9
01BA
01BA
01BC
00044 01BD
01BE
01BF

46
3A
46
3E
4A
3E
4A
3E
4A
3E
4A
24
3E
24
3E
29
42
29
42
29
42
29
42
29
42
29
42
29
42
29
42
2B
31
37
3E
42
4A
0o

00045 END

(84)
(6E)
(84)
(75)
(8C)
(75)
(8C)
(75)
(8C)
(75)
(8C)
(45)
(75)
(45)
(75)
(4D)
(7€)
(4D)
(7€)
(4D)
(7€)
(4D)
(7€)
(4D)
(7€)
(4D)
(7C)
(4D)
(7€)
(4D)
(7€)
(52)
(5€C)
(69)
(73)
(7€)
(8C)
(00)

10-80

UNIT TEN

196.0

6F

(D2)

G#
.0 {207.7

69
C8)

A
220.0

63
(88)

A#
233.1

Discussion

The program you entered occupies memory locations 0000 through
0024,,. The remaining data represents the notes in the music. It was
structured in this manner so that you could experiment with different
songs. Figure 10-65 illustrates the various notes the program can pro-
duce, on the outline of an organ keyboard. Each note is listed with its
actual fundamental frequency below the note letter. The number below
the frequency is the hex number that will produce that approximate
frequency. The number in parentheses is the one to use if your Trainer has
been modified and has a fast clock. The notes your Trainer will produce
depends on the MPU clock frequency. Even with the crystal-controlled
clock in the modified Trainer, it is not possible to reproduce the exact
frequency of the notes.

Although the music program is basically simple, there are a few unique
features that should be examined. The first instruction clears control
register B of the PIA. Naturally, this occurs prior to program execution.
However, it will be necessary to modify the contents of data direction
register B prior to each program cycle. Thus, bit two in the control register
is cleared.

The second instruction turns bit PBO on or off for each program cycle.
Incrementing the data direction register will be of more value in the next
section of this experiment.

Instruction four (LDS) tells the MPU that the data stored at 0101 thru
01BF,s now resides in the stack. However, the pointer contains address
0100,. This is necessary, since each “pull” instruction adds ““1” to the
pointer prior to execution.

The last note in the stack is 00,4. This is used to indicate ‘“‘end of music.”
Since a pull instruction does not affect any of the MPU condition codes, it
is necessary to test for zero with instruction seven (TST B).

C# D# F# | |G#| |A# C# D# F#| |G#| | A# C#

2772 |31 3700 | 4153 |466.2 5544 |622.3 740.0 |830.6 |932.3 1108.7
5D 4E| |46 3A| |34 | |2E 27 22 1D| {19 {17 13
(B1) (94) (84) (6E) | (62 57) (49 (41) 36 (30}] [(28B) (24)

B8 |c |o |e |F la |a e [c |o|e |F|la [ale [c |o |
246.9]261.6]293.7 | 329.6 | 349.2 | 392.0| 440.0| 493.9) 523.3 7

58 |53

587.3]659.3| 698.5) 784.0 | 880.0| 987.8{ 1046.5 1174,

4A {42 |3E |37 (31 |2B (29 |24 (20 (1E [1B |18 {15 |14 |12
(A7)] (30) J(8C) | (7C) | (75) | (69) | (5C) | (52) |(4D) | (45) | (3D) | (39) | (33) | (2D) | (28) | (26) | (21)

Figure 10-65
Music notes reproduced by the pro-
gram in Figure 10-64.

Interfacing Experiments J 1 0"81

Theremaining program steps contain two timing loops. The first, starting
at line 00007 sets the music tempo. The second, starting at line 00008
produces the notes.

NOTE: If you wish to listen to your ROM, enter FC,4 at 000A 4, and 01,5 at
0010,. It is necessary to remove the TST B instruction, since ROM
contains a number of 00,; data bytes. Now, the program will continue
until you press RESET.

Procedure (continued)

15. If you modified the music program (addresses 0000 through
0024,4), refer to Figure 10-64 and reenter the program. Its not
necessary to reenter the same music notes if you have not modified
them.

16. Refer to Figure 10-66 and modify your speaker circuit. Notice that a
resistor is placed between gate IC3B and the speaker. Also, an
additional gate (from IC3) and resistor interface pin 11 of the PIA
with the speaker.

17. Execute the music program. This time, the music plays three times
before there is a pause. The first repeat is an octave lower, and the
second repeat simultaneously plays the original and octave lower
music.

Discussion

The gate connected to pin 11 of the PIA (data bit PB1) allows an addi-
tional output interface to the speaker. The two resistors reduce circuit
loading so the outputs of the two gates can be combined at the coupling
capacitor. However, the resistors also reduce the signal level and as a
result, speaker volume.

The music program is unchanged from the previous section. However,
you are now using two additional features in the program that previously
were not required or apparent. The first concerns the PIA. Each time the
program repeats, the data direction register bits are incremented. This
meant the PBO bit cycled the music on and off. Now that two output pins
are wired to the circuit, a new pattern develops. First, pin PBO is active.
Then pin PB1 is active. Next, both pins are active. Finally both pins are
inactive. Thereafter, the cycle repeats.

100uf

SPEAKER

Figure 10-66
Modification to the speaker circuit.

10-82

UNIT TEN

That cyclic pattern accounts for two (apparent) channels of music. But,
why does one channel sound like it is one octave lower in frequency?

At the end of each “note” timing loop, the A accumulator is stored, and
then incremented. Thus, the speaker is driven by a cyclic logic level
transition of the D, data bit. However, every two level transitions in the D,
bit causes a single level transition in the D, bit. Figure 10-67 illustrates
the process. Since bit D, is coupled to PIA bit PBO, and bit D, is coupled to
PIA bit PB1, you effectively have identical music material generated at
two different octave levels.

If you have a stereo sound system, you can connect the music output of
each gate (through a 100 ohm resistor) to the AUX input of your amplifier.
The sound reproduction will be better than that produced by your
Trainer.

This completes this experiment. Leave the circuit intact for the next
experiment.

ACCUMULATOR A
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
0000 1000

S

Figure 10-67
Music material coupled to the PIA.

HEATHKIT
CONTINUING

:—i—lﬁﬁ:

EDUCATION Interfacing Experiments

10-83

Experiment 8

KEY MATRIX AND
PARALLEL-TO-SERIAL CONVERSION

OBJECTIVES:

Demonstrate a method for using any combination of PIA I/O ports as
inputs or outputs.

Show how a matrix-type keyboard decoder system works, and how
it can be constructed.

Demonstrate parallel-to-serial conversion using the PIA.
Demonstrate a method for converting a hex digit to ASCII.
Show how a ‘““one-shot” monostable works, using software.

Show how to add the parity bit to a serial word, using software.

Introduction

You are quite familiar with the PIA by now. In this experiment, you will
demonstrate its versatility as an I/O device. In addition to using one
peripheral port as both an input and output bus, you will see how a
parallel data transfer device can be used to communicate in ‘“serial.”
Since a great amount of serial data uses ASCII, this experiment will use
the ASCII format.

Material Required

1

ET-3400 Microprocessor Trainer with PIA circuit wired to the large
connector block

1000 ohm, 1/4-watt, 10% resistors
Pushbutton switch #1
Pushbutton switch #2
Pushbutton switch #3

Pushbutton switch #4

10-84 l UNIT TEN

L

b

Figure 10-68

Matrix switch circuit.

Procedure

1.

P8

PIA

+5V

1000
Ua-ws 1

1c-38 \&
5| 7400

ks

.' 8 I
11 1C-3C
g

Saksai==

1000 P
14-W 3

lCOLUMN 1 I

In this part of the experiment, you will see how the PIA interfaces
with a switch matrix. Switch the Trainer power off. Then remove
the 100 uF capacitor, two 100 ohm resistors, speaker and the wires
associated with those parts.

ATA __ _
DATA 1/0 TRAINER DATA R 4 [FATT 5Ty [R/W
7[5oo INTERFACE BLOCKS =
D7DgDs5D4 93020709 Ceeo 233:
VMA 02 oooo cogco T, ‘RO RTT
iy 7 cene sepn| AMA l”:) ‘ ST B_Ll
14-A12 10
gggg Als A3 Ayl AgAg ATAgAsAy A3A2A Ag
oaooo oooco oooo oooo
Lined |92 11 socoo ocoo T
TRATNER
\ ADORESS
57RL INTERFACE
o2l BLOCKS
28
T R
80 e
.o
L]
32
Dpid3
+5y 0 X
a1 %E ol 3 ic-3A
1000 vew [o]¢® o ol
» L 1000 A IRQBEH
Ua-w $1/a-w p cs2 TROARS
1000)
’-O\"-O\ va-w 34 csif2e 8 A1c-ac(1n
l%_ 2 CA2 74Ls27 o
8
1c-3¢ |11 — T
o el REsET —
’ O\ { 04\ csol2 12/7c-an(2
3? ? . naLs27 (L
rc-3s | tof o 35
o 5| RS1E
18 RsOMT
PB7 RIW
pge i
2
3
4lic2 \8
3§ 741530
§
coa >-— N.C.—5
= 20]' 141' 14 14 NG “2
ic-1 1c-2 1C-3 1C-4 n.c.—4
¢80 | {ras3o| | ra00 | |raser .
4a3-| | aa3-| [aa3-1] |aa3- Figure 10-69
343 | [132 800

:

7

]

Circuit diagram for the switch matrix

decoding circuit.

Interfacing Experiments

2. Refer to Figure 10-68 and add the circuit shown to the PIA circuit.
Figure 10-69 shows the complete circuit wired to your Trainer.

3. Refer to Figure 10-70 and enter the program listed. Do not attempt

to enter data at address 003E,;;. This will serve as a temporary
storage register.

4. Execute the program. The display will go blank, except for the
decimal point in digit H.

5. Randomly press the matrix circuit pushbuttons, individually and
in combination, and observe display H.

00001
00002
00003
- 00004
00003
000046
00007
00008
00009
00010
- 00011
00012
00013
— 00014
00015
00014
00017
- 00018
20019
00020
- 00021
00022
00023
00024
00025
00026
Q0027
— 00028
00029
00030
00031
00032
00033
00034
- 00033
00036
00037
00038
00039
00040

0000
0003

0004

0009
000HR
000CC

000E
0010

0013
0015
0018
Q01R
Qo1rn
001E
0020
0023
0024
0028
002E

002D
0030
0033
0036

0038
003R
003C
Q03E

FEZ28
FCEC

FES2

CE
FF

ED

36
44
24

846
B7

86
B7
Fé&
QA
59
28
70
7A
27
78
20

7A
Ré6
RD
20

RD
80

20

-
~

0F04
8002

FCEC

FF

FIh

04
003E

01
8002
8002
10

10
003E
0O03E
10
8002
EE

003E

003E
FE28
CE

c8

0001

NAM KEYMATRI

OFT NOF
OUTHEX EQU $FE28
REDIS EQU $FCRC
ouTST1 EQU $FES2 -
XINITIALIZE FIA

L.n0X #$0F04

STX $3002

¥SET DISFLAY LOCATION

NEWKEY J&R REDIS
¥REFRESH WAILT
LA & #$FF
WAIT DEC A
ENE WAIT
XNUMEBER OF KEYS
LA A #3504
STA A KEYNUM
XROW SEARCH
LOAa A #$01
STA A $8002
NXTROW LDA B $8002
EBFL coL1
ROL R
EFL coLz2
DEC KEYNUM
DEC KEYNUM
REQ ouT
ASL $8002
BRA NXTROW
XCOLUMN IDENTIFICATION
coL1 DEC KEYNUM
coLz2 LA A KEYNUM
JSR OUTHEX
ERA NEWKEY
XELLANK DISFLAY
ouT JEGR OuUTST1
FCER $80
ERA NEWKEY
KEYNUM RME 1

END

REV 0.4

Figure 10-70

10-85

Program for decoding key matrix.

SET DISFILAY LOCATION

X

XWAIT

X

TOTAL KEYS
TO UFDATE

SELECT ROW ONE
OUTFUT TEST RIT
GET CLOSURE
Wwas IT CcoL1?

Was IT CcoL27
NO KEY INDICATION

SHFT ROW RIT
TEST NEXT ROW

GET KEY NUMEER
MONITOR ROUTINE

MONITOR ROUTINE
OUTFUT D.F. ONLY

NUMBER TO RE DISFLAYEDN

10-86

UNIT TEN

Discussion

Refer to Figure 10-68. Notice that each pushbutton switch occupies a
unique row and column electrically. Referring to the switch contacts,
each “column” line is held at a logic 1 through a 1000 chm resistor. Each
“row’’ line is held at alogic 1 by the output of a NAND gate. In this circuit,
the gates serve as inverter/drivers.

Assume that you close switch 2. In searching for the closed switch, the
program first places a logic 0 on row 1 and then examines column 1 and
column 2. Since both columns are still at a logic 1, row 1 is returned to
logic 1, and row 2 is pulled to a logic 0. Again columns 1 and 2 are
examined. This time, column 2 is found to be low, indicating that switch
2 is closed.

Refer to the program in Figure 10-70. Data direction register B is loaded
with a bit pattern (OF¢) that sets pins PBO and PB1 as outputs, and pins
PB6 and PB7 as inputs. Although the other pins are set, they are not used
in this experiment. Bit pattern 04, then sets bit 2 of the control register
high for access to the peripheral B interface.

A jump to monitor routine REDIS stores the address of display H in a
temporary location in memory. This address will be used by other
monitor routines to output data to display H.

The next three instructions provide a short time delay to help prevent
character “‘ghosting.” Some ghosting may be noticed in subdued light,
due to the “rewriting”’ techniques used in this program.

Since four pushbutton switches (keys) are used in this experiment, deci-
mal 4 is stored at temporary register 0041,,. This number or a de-
cremented value of this number will be displayed when a switch closure
is recognized.

The row search begins by storing 01,4 to the PIA. This pulls the output of
IC3B low (row 1). Then the PIA B side bus data is loaded into the B
accumulator, and bit D; is tested for a 0. Assuming switch 2 was pressed,
bit D, will test as a 1. The B accumulator is rotated left so that bit D¢ can be
tested at the D; position. Since it also indicates 1, switches 3 and 4 have
tested open.

Key number 4 in the temporary register (0041,¢) is decremented twice
prior to testing switches 1 and 2. Data stored at the PIA is shifted left. This
pulls row 2 low.

Interfacing Experiments 10' 87

The row search begins again at line 00021. When column 2 is tested, it is
discovered that switch 2 is closed. The program branches to address
00335, and the A accumulator is loaded with the key number (2) from the
temporary register. The monitor routine, OUTHEX, writes the number 2
into display H, and branches back to address 0006,; where the program
begins again.

If all of the keys test open during row search, the program will branch to
OUT, where a monitor routine lights the decimal point in display H and
blanks all of the other displays. Then, the program branches back to
address 00065 and begins again.

You may have noticed that as you press more than one switch, the first
switch tested will have priority. This occurs in a 3, 4, 1, 2 sequence.

Up to 16 switches can be tested with this program. By using both the A
and B sides of the PIA, up to 64 switches can be tested. This can represent
a big savings in peripheral interface logic.

Procedure (continued)

6. Switch the Trainer power off. Then remove the four switches, their
two 1000 ohm resistors, and their associated wires. This includes
the wires at pins 10 and 11 of the PIA.

7. Add the circuit shown in Figure 10-71 to the PIA circuit wired to
your Trainer. -

VMA:D2
1HZ—] i

goaoo
gon

[-
vine 02

a0
L

Figure 10-71
Display interface for serial data transfer.

=
>
~
m
o
v

O
O
O
O

CELLY
[ona}Os
[geea] ©

a LED
B {CONNECTOR
81 8LOCKS
10
L.—Z.‘pgo
PAO

PIA

10-88

HEATHKIT

UNIT TEN CS:IKTIANTI:ION“G
8. Switch Trainer power on. Then enter the program listed in Figure

10-72. Do not attempt to enter data at address 0048,¢. This address
will serve as a temporary storage register.
When this program is executed, data LED7 will flash on and off at
approximately a 1 Hz rate. The 1 Hz signal will be used as a
program timing signal through PIA pin PAO. The flashing LED will
serve as a visual timing reference.

00001 NAM SERIALOL1 REV 0.6

00002 OFT NOF

00003 8000 FIAIN EQU $8000

00004 FIOF4 INCH EQU $FIF 4

00005 8002 FIAQUT EQU $3002

00006 0000 CE FEOA4 LDX #$FEOA4

00007 0002 FF 8000 STX FIAIN

00008 0006 CE FFO04 LoX #$FFO04

00009 0009 FF 8002 STX FIAQUT

00010 000C 7F 0048 CLR TEMF

00011 0Q00F 73 8002 cOoM FIAQUT

00012 XGET HEX CHARACTER

00013 0012 RI* FIIF4 NXTCHR JSK INCH

00014 0015 01 NOF X 8I HOLD

00015 00146 01 NOF x 39 FOR

00016 0017 01 NOF X 8D FROGRAM

00017 0013 01 NOF X 47 MODIFICATION

00018 XCOMMENCE WITH START EIT

00019 0019 7F 8002 RESET CLR FIAOQUT RESETS ALL OUT RITS

00020 001C 8D 1E ESK DELAY

00021 ¥OQUTFUT THE CHARACTER

00022 O01E R7 8002 STA A FIAOQUT LSE IS STORED OUT

00023 0021 8D 14 RSR DELAY

00024 0023 86 07 LA Ao #07 NO, OF TIMES SHIFTED

000235 0025 76 8002 WORD ROR FIAQUT NEXT MSR IS STORED OUT

00026 0028 8D OF ESR DELAY

00027 002A 4A EC A XCHECK FOR NUMRER OF

00028 002R 26 FB8 ENE WORD XBITS SHIFTED

00029 XOUTFUT 2 STOF BRITS

00030 002 86 01 LA A #%$01 SET LSE

00031 002F ER7 8002 STA A FIAQUT STORE IT TO QUTFUT

00032 0032 8Dl 05 WAIT BSR DELAY

00033 0034 4A DEC A XWAIT FOR TWO

00034 0035 26 FR ENE WAIT XRIT TIMES

00035 0037 20 D9 ERA NXTCHR DONE! GET NEXT CHAR.

00036 XDELAY SUBROUTINE

00037 0039 F&6 8000 DELAY LIA E FIAIN SAMFLE INFUT LOGIC LVL.

00038 003C S NEG R INFUT NOW FF OR 00

00039 003D F1 0048 CMF R TEMF IS IT LIKE TEMP?

00040 0040 27 F7 REQ DELAY IF 50y GET ANOTHER SAMFLE

00041 0042 73 0048 CcOoM TEMF IF NOT, COMF TEMF

00042 0045 2R F2 EMI DELAY IF TEMF = FFy STAY IN LOOF

00043 0047 39 RTS

00044 0048 0001 TEMF RME 1 Figure 10-72

00045

ENI Program to input serial data.

HEATHKIT
CONTINUING
EDUCATION

Interfacing Experiments 10"89

—_——

9. Execute the program. Data LEDO will light to indicate the program
is running.

Discussion

Until now, you have observed data words being displayed in a parallel
manner only. That is, all of the bits contained in the data word or byte
were displayed simultaneously. You will now display a data word se-
rially. In the serial mode, data bits are displayed one after the other. For
this experiment, the bits-per-second or baud rate will be very slow so that
you will be able to recognize each data bit. Baud is defined as one bit per
second.

When you return to the experiment, you will use the Trainer keyboard to
enter a hex number. The number will be converted to its binary form and
transferred to data LED 0 one bit at a time. However, what you will see is
not a 4-bit word, but rather an 11-bit word.

When serial data is transferred, it must fulfill certain format conventions.
These include a start bit, to indicate the beginning of a word; the informa-
tion being transferred; and a stop bit, to indicate the end of a word.
Depending on the instrument sending data, and the baud rate, the data
word can have one start bit, six, seven, or eight data bits, zero or one parity
bit (often considered one of the data bits) and one or two stop bits.

The word format used in this experiment uses one start bit, eight data bits,
and two stop bits. Figure 10-73 illustrates the serial word for hex 5. For
added clarity, the timing signal for data LED7 is included. Notice that the
actual data is transferred, beginning with the LSB. Also, only the first four
data bits (plus the start bit) are of interest, since you are only transferring a
single hex digit. Later in the experiment, the remaining four data bits will
be used.

omw |01]of1]oiolofoloftT1

1 iLss MS8) Voo

. BIGIT T UNUSED crapciap
START STOP STOP
BIT DATA DATA BIT 8IT

Figure 10-73
Serial data word format for the number 5.

10-90

UNIT TEN

Procedure (continued)

10. All timing is referenced to data LED7. Serial data is transferred
through data LEDO. When you are instructed to press a Trainer key,
momentarily press the key while LED7 is off. It will take a little
practice to be able to identify the data being transferred. Refer to
Figure 10-73; it shows the data word you will observe when you
press the 5 key. Press the 5 key and observe data LED’s 0 and 7. Do it
a number of times so that you can recognize each bit in the serial
word.

11. Press a number of different Trainer keys and observe each serial
word. You may find it helpful to illustrate each word, so you know
what to expect.

Discussion

Data direction register A is set so all of the pins of peripheral bus A are
outputs, except for pin PAO. Thus, it will not be necessary to electrically
tiethe unused pins to a logic 1. Data direction register B is set so all of the
pins of peripheral bus B are outputs. Then, temporary register 0048 ¢ is
cleared.

Since output register B contains logic 0’s from PIA reset, the contents of
the register are complemented. This turns data LEDO on, its waiting
condition. Everything is now prepared, and the main program can begin.

The program immediately jumps to monitor routine INCH and waits for
an input from the Trainer keyboard. When a key is pressed, PIA pin PBO is
cleared, generating a start bit. The delay used to set the bit time will be
described at the end of the program.

After the start bit delay, the key number, now residing in accumulator A,
is stored in output register B. Data LEDO immediately displays the LSB of
the number. Then accumulator A is loaded with the number representing
the number of times output register B must be rotated right in order to
display each databit in data LEDO. The data in output register B is rotated
through pin PBO with a time delay after each rotate.

Once all eight data bits have been stored, 014 is stored to output register B
from the A accumulator. This forces LEDO on, indicating the first stop bit.
After two time delays, for the two stop bits, the program branches back to
monitor routine INCH and waits for a new key closure.

Interfacing Experiments

The delay subroutine uses the 1 Hz clock for timing. This is why the serial
data transfer coincides with the lighting of data LED7.

At the beginning of the delay routine, PIA peripheral interface A is
examined. Pin PAO should be logic 0 if you pressed the Trainer key while
LED?7 was off (logic 0). Therefore, 00, is stored in the B accumulator. (01 ¢
would be stored if LED7 was on.)

The data in the B accumulator is negated and then compared with the
temporary register (0048,¢). Since both registers are equal, the program
loops back and examines pin PAO again. This cycle continues until pin
PAO goes to a logic 1. Accumulator B is loaded with 01,4 The data is
negated to produce FF .

Since the B accumulator and temporary register are no longer equal, the
temporary register is complemented. This changes its contents to FF,
which represents a negative number to the MPU. Because the temporary
register contains a negative number, the program branches back to the
beginning of the delay routine.

Pin PAO is again repeatedly examined for a logic level change from 1 to 0.
When this level transition occurs, the program returns the temporary
register to its orginal 00, condition, and then returns the program
counter to the main program. Thus, you have effectively generated a
software one-shot monostable with a time period determined by the 1 Hz
signal.

Procedure (continued)

12. Enter the program listed in Figure 10-74. Notice that the program
begins at address 0050,.

00001 NAM ASCICONV REV 0.1

00002 OFT NOF

00003 0050 ORG $30

00004 XCONVERTS HEX TO ASCII

000035 0050 84 30 ORA A #3330 ASC NO. START WITH 3
00006 00352 81 39 CMF A #$39 IS IT A NUMBER?
00007 0054 23 04 RLS DONE IF S0r DONE

00008 0036 80 09 SUR A #3$09 XLETTES START AT 1
00009 0058 S8k 10 Al A #$10 XAND BEEGIN WITH 4
00010 005a 39 DONE RTS

00011 END

Figure 10-74
Program to modify serial program for
ASCII word format.

10-91

10-92

UNIT TEN

HEATHKIT

13. Now return to address 0015,; and enter 8D,;. Then enter 39,4 at
address 0016,.

14. Execute the program beginning at address 0000,. This is the be-
ginning of the serial output program.

15. A hex to ASCII conversion subroutine has been added to the serial
output program. Refer to Figure 10-75. Notice that the ASCII rep-
resentation for hex 5 is 35,5. Press the Trainer’s 5 key and watch
data LEDO. Be sure to press the key while data LED7 is off. The
serial data format remains unchanged, with one start bit, eight data
bits, and two stop bits.

16. Press a number of Trainer keys, and observe the serial transfer for
each key.

[coumn | o | + | 2 | 3 |4 |s | e | 7 |
Row || BiTS 765 [} 000 001 010 011 100 101 110 m
4321
-

0 0000 NUL DLE SP 0 @ P \ P

1 0001 SOH DC1 ! 1 A Q a q

2 0010 STX DC2 - 2 B8 R b ¢

3 0011 ETX olox} # 3 c S c s

4 0100 EOT DC4 $ 4 D T d t

5 0101 ENQ NAK %% 5 E u e u

6 0110 ACK SYN & 6 . F v t v

7 o111 BEL ETB ' 7 G w] w
8 1000 BS CAN (8 H X n x

9 1001 HT EM) 9 | Y i y
10 1010 LF sus . : J z] 2
1" 1011 vT ESC - K | Kk

12 1100 FF FS . < L \ i !
13 1101 CR GS - = M } m L
14 1110 SO RS > N TN n ~
15 1 S| us r » o] _ o DEL

Figure 10-75
Table of 7-bit American Standard Code
for Information Interchange.

EDIKMIONNG Interfacing Experiments 10'93

Discussion

Remember that the Trainer outputs the hex value in binary when a
number is pressed. Therefore, when the 5 key is pressed, 05,5 will be
loaded into the A accumulator, in the serial output program. Then the
program will branch to the ASCII conversion routine. This is caused by
the branch instruction in address 0015, and the relative address for the
branch in address 0016 .

The first instruction in the conversion routine OR’s 05,5 with 30,5 to
produce 35, The next instruction compares 35,5 with 39, If the first
value is smaller (which it is) or equal to 39, a valid ASCII number is
present in the A accumulator, and the program counter is sent back to the
main program.

If a valid number is not present, 09 is subtracted from the value in the A
accumulator. Assume that the C key was pressed. Then the number stored
in the A accumulator is 0C,;. When OR’ed with 30, it equals 3C.
Remember that a compare instruction does not alter the contents of the
accumulator. Therefore, when 09, is subtracted from the contents of the
A accumulator, the result is 3C,4—09,,=33 . Finally, 10,4 is added to the
contents of the A accumulator, resulting in the value 43,. Notice in
Figure 10-75 that 43,4 equals C in ASCII code. Again the program counter
returns to the main program.

Procedure (continued)

17. Enter the program listed in Figure 10-76. Notice that this program
begins at address 0060,4. Stop after you enter 39,5 at address 0075 .
Address 0076, is used as a temporary register.

90001 NAM ADDFARIT REV 0.1

00002 OFT NOF

0003 0060 ORG $40

00004 xADD FARITY EBIT

00005 0060 7F 0076 FARITY CLR FARIT1 START FRESH

00006 0063 C& 09 LIA B #$09 TIMES TO SHIFT

00007 0085 49 EITCNT ROL A SHIFT ONCE

00008 0066 24 03 ECC NOINCR SKIF INCK.

00005 0048 7C 0076 INC FARIT1 COUNT LOGIC 1 RITS
00010 004R SA NOINCR DEC K COUNT OFF TOTAL ERITS
00011 004C 26 F7 ENE RITCNT ALL CHECKED YET?
00012 00&4E 76 0076 ROR FARIT1 CHECK LSE OF FARIT1
00013 0071 24 02 ECC FINIS wasS IT oDoD?

00014 0073 8A 80 ORA A #$80 IF SO0y SET FARITY RIT
00015 0075 39 FINIS RTS _

00016 0074 0001 FARIT1 RME 1 Figure 10-76

00017 END Subroutine to add parity bit to serial

output program.

10-94 l UNIT TEN

18. Now return to address 0017, and enter 8D,. Then enter 47,4 at
address 0018,.

19. Execute the program beginning at address 0000, This is the be-
ginning of the serial output program.

Discussion

Remember from Unit 1 that a parity bit is added to a serial word as a data
transfer check. It indicates whether the sum of logic 1’s in the data portion
of the word are odd or even. Thus, if you desire an even parity check, the
sum of the parity bit and all of the other data bits must equal an even
number. Odd parity requires that all of the data bits plus the parity bit
equal an odd number.

For example, the ASCII code for the number 5 is 35,5. Since 35,5 equals
0011 0101,, the parity bit would be 0 for even parity and 1 for odd parity.

The parity bit occupies the eighth data bit position in the 8-bit data word.
The first seven data bits contain the ASCII code.

Procedure (continued)

19. Determine the serial data word for hex 5. Then press the 5 key and
observe LEDO. Notice that the parity bit is 0 since the parity routine
is configured for even parity.

20. Press a number of Trainer keys, and observe the serial transfer for
each key.

21. Change the program data address 0071,; to 25,5. then press a
number of Trainer keys, and observe the serial transfer for each key.
The parity routine is now configured for odd parity.

Discussion

After the hex number is converted to ASCII code, the program branches
from address 00174 to the “‘even” parity routine. This routine determines
if a 1 or 0 will be placed in the eighth data bit to provide an even parity
indication.

To begin, the temporary register at address 0076 ¢ is cleared. This register
will store the count of the number of logic 1 bits found in the data word.
Accumulator B is loaded with 09,5, which will be decremented to
monitor the bit count routine.

Interfacing Experiments 1 0'95

Accumulator A is rotated left and the carry bit is checked. If the carry is
set, the temporary register is incremented; then the B accumulator is
decremented. If the carry is clear, the B accumulator is immediately
decremented. Since the B accumulator is not zero yet, the program loops
back, and the process continues.

Notice that the A accumulator is rotated nine times. This is necessary
since there are actually nine data bits including the carry bit, and the
contents of this accumulator will be used by the main program. The carry
bit will not affect the logic 1 bit count, since it was cleared by instruction
7F 6.

After all of the bits in the A accumulator have been examined, and all 1’s
stored in the temporary register, the temporary register is rotated right.
This places bit D, in the carry bit position. the carry bit is then examined.
If it was clear, the program counter returns to the main program; the
ASCII code contains an even number of 1’s, and does not require modifi-
cation. If the carry bit was set, accumulator A is OR’ed with 80,4, which
places a 1 in the eighth (MSB) bit of the ASCII code. This makes the total
number of 1’s even in count. The program counter then returns to the
main program.

To convert the parity bit routine to odd parity recognition, the code at
address 0071, is changed to 25,¢. This causes a branch if the carry is set.

Procedure (continued)

22. Pull the circuit timing wire from the 1 Hz socket and connect it to
the LINE socket.

23. Press a number of Trainer keys and observe the serial transfer at
data LEDO.

Discussion

When you press each Trainer key, you can see data LEDO flash on and off
at a rapid rate. This is because the baud rate is now equal to the line
frequency. Although the transfer rate appears to be quite fast, it is consi-
dered very slow for computer work. Typical speeds for a teletypewriter
are almost twice as fast as the line frequency. Speeds as high as 96.2
kilobaud are quite common.

Procedure (continued)

24. Do not disturb the circuit wired to your Trainer. It will be used in
the next experiment. Proceed to Experiment 9.

10-96

UNIT TEN

—_———
HEATHKIT
CONTINUING

(

Experiment 9

DIGITAL-TO-ANALOG AND
ANALOG-TO-DIGITAL CONVERSION

OBJECTIVES:

Show how to connect a digital-to-analog converter (DAC) to a mi-
croprocessor system.

Demonstrate how a DAC converts digital information into an analog
equivalent.

Demonstrate a number of programs that will produce variable
analog signal levels from a DAC.

Show how to convert a DAC into an analog-to-digital converter with
a voltage comparator.

Demonstrate a program that implements the analog-to-digital con-
version.

Introduction

When analog input and output capabilities are added to a microproces-
sor, its power can be greatly expanded. Basically, the microprocessor is a
digital device that is ideal for control of discrete input/output levels.
However, many analog signals can also be processed with a minimum of
additional hardware. With this addition, such devices as temperature
sensors and photo cells can be monitored, and analog signals can be
coupled to various peripherals such as oscilloscopes and audio
amplifiers.

In this experiment, you will learn how to use the digital-to-analog con-
verter (DAC) for outputting an analog signal. You will also learn how to
translate an analog signal into its equivalent digital value using the same
DAC.

Interfacing Experiments 10'97

Material Required

1 ET-3400 Microprocessor Trainer with the PIA circuit wired to its large
connector block

3 1000 ohm, 1/4-watt, 10% resistors

1 2000 ohm, 1/2-watt, 5% resistor

2 2700 ohm, 1/2-watt, 5% resistors

2 10k ohm, 1/2-watt, 5% resistors

1 1M ohm, 1/2-watt, 5% resistor

2 1000 ohm controls

1 47 pF ceramic capacitor

3 100 pF ceramic capacitors

1 1N4149 diode (56-56)

1 5.6-volt zener diode (56-616)

1 741 op amp integrated circuit (442-22)
1 301 op amp integrated circuit (442-39)

1 MC1406 DAC integrated circuit {443-842)

1 VOM, VTVM, or DVM with input impedance greater than 100 k ohm
(11 M ohm desirable)

1 Oscilloscope (optional)

10-98

UNIT TEN

Procedure

1.

Switch the Trainer power off. Then remove the wires interconnect-
ing LINE and data LED7, data LED7 and PIA pin 2, and data LEDO
and PIA pin 10. The remaining PIA circuitry will be used in this
experiment.

Refer to Figure 10-77 and construct the circuit shown, on the large
connector block affixed to the Trainer cabinet. Be careful when you
insert 1/2-watt resistor leads. It is easy to push a connector strip out
of the bottom of the block. The 1000 ohm control leads will fit into
the connector block if you straighten them out and then insert the
control at a slight angle. You can also solder a short wire to each
control lead. Figure 10-78 shows the complete PIA circuit with the
DAC circuit added.

R6
RS 1000

CONTROL
sy 2000

<~

) R3
2700
11 12fl/2-w
-12v.
tC-5 3
MC1406
P82

100pF
sa3sa2 1o TO°
P81

—
P80 ‘ R4 100pF
2 2700
— J 1/2-w

Figure 10-77
DAC circuit added to the PIA interface
circuit.

PB5f->
PB4
P83

0
ANALOG
QuUTPUT

e
>
=
~

o |©e = |~ {o |

mm"nf Interfacing Experiments
=
DATA 110 TRAINER DATA WMo [ARTT
INTERFACE BLOCKS —ooo
D7D6D504 D30704Dg ogeo
oooo aooo vmal |iRa
y seys
Ala Ay Alo
Als A3 A1l AgAs A7AgAcAy
ooQgo gooo ogcogo cogoao
(11X, ooo occoo
TRAINER
ADDRESS
D728 INTERFACE
21 BLOCKS
sy gy 125 o128
Ic-1
vl’/°4°_°w Blegr s of2
A (1 oo 38
3]
100 40 CAl G2
1/4-w 139 .
R6 M CA2 Do |23
1000 RS \
CONTROL 2000 sy] 3 1c-3A
1/2-W ~ 200 {2
i I 8271 ‘
) 47pF R3 TRQA A38
2700 ¢
50 2-w3 cs1f2e 8 Ac-acf10
12 il 74527 {9
4 515
T2V s a0 RESETRA
O—dt Y P84 13
ANALOG ‘C'456 1134, csol22 127c-4a{2
ouTPUT 1000F 2, mMcla0s ro 7 vs2 s\ L
l 3
35
443-342 19 1), o :;é =
13} 010,00 R I
100pF R4
2100 2 ‘ L
1/2-W 2
{7 3
dtic-2 \8
3.1 14530
6
- - N.C—&d
]nuu_:‘r
= 20 14 1A]' 14[N.C. 112
1c-1 Ic-2 1c-3 1c-4 N.C.—H
6820 | jrasso| | 7400 | |raLsar
443- 443 - 443-1 4430-
343 132 80
) G W W

10-99

Circuit diagram for the digital-to-

Figure 10-78

analog conversion circuit.

10-100

UNIT TEN

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013

0100

0100
0103
0106
0109
Q10C
010F

Switch the Trainer power on. Then enter the program listed in
figure 10-79. Notice that the program begins at address 0100,.

Execute the program. Then, using the Trainer keyboard, press the 3 .
key and then the F key.

Set your voltmeter to measure 5 volts DC. Then connect the com-
mon lead to circuit ground, and the input lead to pin 6 of IC6
(analog output). You should measure approximately 0 volts DC.

Press 00 with the keyboard. Then adjust control R6 for a 5-volt
output level. If you can not obtain a 5-volt level: switch the Trainer
power off, change the value of resistor R5 from 2000 ohms to 1000
ohms, and then switch the Trainer power on again.

Press 20. What is the voltage level?

Press 30. What is the voltage level?

Press 10. What is the voltage level?

NAM LINOUT REV. 0.1

OFT NOF
FCRC REDIS EQU $FCEC
FEO® IHE EQU $FEQ?

ORG $0100

*¥CALIBRATION FROGRAM

CE FFO4 LoX #SFFO4
FF 8002 STX $8002 B SIDE IS OUT
BRIl FCBC NEWIN JSRKR REDIS
RO FEO9 J3R IHE
B7 8002 STA A $38002
20 F3 EBRA NEWIN

END

Figure 10-79
Program to convert digital values to
their analog equivalent.

Interfacing Experiments

Discussion

The DAC converts a binary word into a proportional output current. This
particular DAC is a 6-bit device. That means it can accomodate a 6-bit
binary word. Therefore, the two most significant data bits from the PIA
are not used.

This DAC requires a complemented input, that is, maximum current out
occurs when the PIA output is 00,4 Minimum current occurs when all of
the data lines are at a logic 1 level. This equals 3F 4 (data bits PB6, PB7 not
used).

Op amp IC6 (301) functions as a current-to-voltage converter. Feedback
through resistor R5 and control R6 determines the gain of the op amp.

Since the DAC accomodates a 6-bit binary word, it is possible to have a
conversion resolution of 2% or 64 discrete current levels. With IC6 cal-
ibrated for a voltage swing between 0 and 5 volts, each binary unit equals
approximately 0.08 volts DC. Therefore, the approximate voltage levels
you should have observed in steps 7, 8, and 9 are:

20, = 2.44 VDC
30, = 1.16 VDC
1016 = 3.72 VDC

Refer to the program shown in Figure 10-79. The first two instructions set
up the PIA so the B side operates as an output. REDIS then points to
display H for data display. A second monitor routine, IHB, couples key
closure data to the display, and also loads the data into the A ac-
cumulator. Two key entries are required to complete the monitor routine.
The data is then stored to the PIA. Since only the first six data bits are used
by the DAC, 00, 40, and CO0,; will convert to the same analog levels.

10-101

10-102] unirTeN

Hoar
Hoas
Heas
:PAA
PA3
:PAZ
PAL
Ypao
'TYX) Saed |BINARY
naaoa gooaqo |SWITCH
76054 3210

Peripherial data entry circuit for use

Figure 10-80

PIA

DATA

CONNECTOR BLOCKS

with the digital-to-analog circuit.

00001
20002
GOQ03
20004
0005
00006
00007
00008
Q0009
00010
Qo111
00012
00013
00014
00015

Procedure (continued)

10.

11.

Switch the Trainer power off. Then refer to Figure 10-80 and
interconnect the PIA and the binary data switches.

Switch the Trainer power on. Then enter the program listed in
Figure 10-81. Notice that the program begins at address 0120,.

Execute the program located at address 0120,¢. Then set the binary
data switches for 1F,;. The voltmeter should indicate a slowly
decreasing voltage that cyclically ramps from 5 volts to 0 volts.

The rate of voltage change is determined by the binary data
switches. If you have an oscilloscope, connect its input to pin 6 of
IC6 and circuit ground. Now change the binary data switches to
00,6. You should observe a descending voltage ramp.

Discussion

The voltage ramp in this program is a composite of 64 discrete voltage

steps.

Each step represents a binary value. Therefore, an 8-bit DAC would

have produced a ramp with 256 discrete steps, while a 4-bit DAC would
contain only 16 steps.

0120
0120
0123
0126
0129
012C
012D
0130
0133
0134
0135
0137

NAM OUTRAMFL REV, 0,1
OFT NOF
ORG $0120
CE 0004 LIX ¥50004
FE 8000 STX $8000 A SIDE IN
CE FFO04 LIX FSFF04
FF 8002 5TX $8002 B SILE OUT
4F CLR A
7 8002 NXTRMF STA A $8002
FE $000 LI $8000 TIME TO WAIT
4c INC A INCR RAMF 3TEP
09 STHOLD DEX
26 FI ENE STHOLD
20 Fa ERA NXTRMF
ENI

Figure 10-81
Program to generate a voltage ramp.

Interfacing Experiments

Procedure (continued)

14. Change the data at address 0133, to 4A 4. Then execute the pro-
gram. You should observe an ascending voltage ramp. If you only
have a voltmeter, change the binary data switches to 1F . This will
slow the ramp rate so you can observe the voltage change.

Discussion

Theramp program sets the A side of the PIA as an input, and the B side as
an output. The A accumulator is cleared so the ramp will begin at +5
volts. Accumulator A is stored to the DAC through the PIA. Then the
index register is loaded with the binary switch data. This will determine
the waiting period between voltage ramp steps.

Remember that the index register always contains two bytes of data. The
first byte (high byte) is obtained from the specified address, and the
second byte (low byte) is obtained from the specified address plus one.
Therefore, when you load the index register from the PIA, the high byte
contains the binary switch data, and the low byte contains 04 4. 04 4 is the
data stored in the A side control register of the PIA during initialization.

Accumulator A is incremented for the next voltage level, and the index
register is decremented until it reaches 0000,,. Then the program
branches back to the store the A accumulator, and the cycle continues. It
is not necessary to clear accumulator A once the voltage ramp reaches
zero, since the next increment sets the six least significant binary data bits
to zero.

10-103

10404Lumrmn

Procedure (continued)

15.

16.

Enter the program listed in Figure 10-82. Notice that this program

begins at address 0140,.

Execute the program beginning at address 0140,. Set the binary
data switches to 1Fs. The voltage should step from 0 to 5 volts and
then back to 0 volts in a cyclic manner. You can observe this dual
ramp (triangle) waveform on the oscilloscope, if you increase the
ramp rate with the binary data switches.

Discussion

This program uses the A side of the PIA to enter step delay data and the B
side to output the discrete voltage level data. However, this time the A
accumulator is loaded with 3F 4, which is the binary equivalent of 0 volts.

00001
00002
Q0003
Q0004
00005
00006
Q0007
20008
00009
00010
00011
00012
00013
00014
G001y
20014
00017
00018
00019
00020
00021
20022
00023
00024

0140
0140
01432
0146
0149
0140
Q14E
0151
0154
0188
D1E7
0158
013564
D1EC
Q1SF
0162
0164
0166
0167
0148
016A

CE
FF
CE
FF
e
FE
R7
27
40
09
24
20

B7
81
27
AC
0%
26
20

0004
8000
FFO4
8002
3F

8OO
8002
10

F o
II.' \)
8000
8002
3F
)

Fh
Fo

LIF

Uk L
LOOFL

LM

[OWN1
LOOF2

Figure 10-82

NAM
OFT
ORG
L0X
STX
LIX
5TX
LI
LIX
Sra
BEQ
=
X
HBNE
EBRA
LI
ST
(M
REQ
INC
DEX
BNL
BRA
NI

A

[2)
=)

TRIANGLE
NOF:
$0140
50004
$8000
FSFFO4
$BOOD
#E3F
$2000
$BO02
DOWN1

LODFL
L”.."
FROOC
$2002
e
UFL

Lor2
DOWH

Program to generate a triangle

waveform.

REV. 0. 1

A SIDE [N

B SIDE Oour
nac OuUT = 0
UELAY TIME
QUT TO DAC

kL. 2Y
atlt v

T I ME.
L

HEATHKIT
CONTINUING
EDUCATION

Interfacing Experiments 1 0'1 05

Beginning at address 014E 4, the index register is loaded with the level
step delay time. Then the A accumulator is stored to the PIA. If ac-
cumulator A is zero, the program branches to address 0166, Since it
equals 3F 4, the A accumulator is decremented. Then, the index register is
decremented until it equals 0000 .

Atthe end of delay, the index register is again loaded, and the contents of
the A accumulator are stored to the PIA. This cycle continues until the A
accumulator equals 00,4 (5-volt level). Then the program branches to
address 0166.

Addresses 015C through 016B,s are similar to the first part of the prog-
ram. They differ in that the A accumulator is incremented and compared
to OF . Thus, the voltage level is cycled from 0 to 5 volts in the UP
program section, and from 5 to 0 volts in the DOWN program section.

Procedure (continued)

17. Enter the program listed in Figure 10-83. Notice that this program
begins at address 0000,.

18. Execute the program. This program produces a sine waveform at a
fixed frequency. If you only have a voltmeter, it should indicate
approximately 1.7 volts AC. An oscilloscope will show a slightly
distorted waveform. This is because of the resolution provided by
the 6-bit DAC. An 8-bit DAC would produce a more symmetrical
waveform.

Discussion

The program uses a “look-up” table (addresses 003B through 004C,) of
constant values to generate a sine wave signal. The table was produced by
deriving the sine of the angles between 0° and 90° in 5° increments, and
then multiplying each value by a constant.

Because the sine wave must reside within a 0 to 5-volt “window,” each
90° segment of the waveform can only be generated by 32 of the possible
data bits. The first 90° of the sine wave starts at approximately 2.5 volts
and steps to 0 volts. The second 90° steps from 0 volts up to 2.5 volts. The
third 90° steps from 2.5 volts up to 5 volts. Finally, the fourth 90° steps
from 5 volts down to 2.5 volts.

10-106

HEATHKIT

UNIT TEN m&tﬁ
00001 NAM SINEWAVE REM.O,2
00002 OFT NOF
00003 0000 CE FFO4 LoX #$FFQO4
00004 0003 FFF 8002 STX $8002
00005 0008 CE 0O0O3E LoX FLETARLE
00006 0009 Cé 11 SIN1 L.0a B #%11
00007 QOCE A& 00 SIN1A LDA A X
00008 200D 01 NOF
00009 OO00E E7 8002 STA A $8002
00010 0011 08 INX
00011 0012 3 DEC R
00012 0013 26 Fé BNE SIN1A
Q0013 00135 C& 11 SIN2 LA B #4$11
00014 0017 A& 00 5INZA LDA A X
00015 0017 01 NOF
Q0014 ©01A R7 80O2 5TA A 4$8002
00017 2010 09 DEX
00018 Q01E 3A DEC R
00019 O01F 26 Fé ENE SIN2A
00020 0021 Cs 11 HIN3 LA B #3511
00021 0023 A6 00 SIN3A LA A X
o022 0023 43 COM A
00023 0026 R7 8002 5TA A $80062
00024 0029 08 INX Figure 10-83
00025 002A Sa DEL B Program to generate a sine waveform.
00026 002B 26 F4 BNE SIN3A
QOO27 002D CH 11 SIN4 Loa B #6811
00028 Q02F Asé 0O SIN«s LIy A Y
Q0029 0031 43 CoM A
Q00030 0032 B7 3002 STA A $8002
00031 00335 09 OEX
00032 00346 3A LEC R
00033 0037 26 Fé6 BME SINAY
00034 0039 20 CE BRA S5ING
00035 003E 20 BTARLE FCRE FE0 B2 BT ETF B EAE2N 2 B 2F

003C 22
003D 25
QO3E 27
QO3F 24
004G 2D
Qa1 2F
000348 ¢042 31 FCR $31 ¢33, 5303753V v 5TAS G
2043 2
o044 33
0045 37
0044 39
C047 34
0048 3R
0Q0327 Q049 3C FOR F3Cs 30, $3E 53
004Aa 3D
0048 3E
004C 3E
00038 ENT

Interfacing Experiments

With the program using only 32 data levels for each waveform segment,
the first five data bits in each byte determine the digital voltage level,
while the sixth bit (D;) determines whether the lower two waveform
segments or the upper two waveform segments are being generated. Refer
to the program in Figure 10-83. Notice that the table of values begins at
20,6, which approximately equals 2.5 volts. The values increase (voltage
decrease) from there. When the upper half of the sine waveform is pro-
duced, the table values are complemented to generate the voltages be-
tween 2.5 and 5 volts.

In the program, the first two steps initialize the PIA. Then, the index
register is loaded with the address of the first value in the look-up table.
Accumulator B is loaded with 11,5, which will be decremented to show
when all of the table values have been used.

The next six instructions form a “fetch and display”’ loop that generates
the first waveform segment. Accumulator A is loaded with the first value
(20,6)- The NOP occupies time to make the loop time identical to the time
used when the third and fourth segments are generated. Accumulator A
is stored to the PIA. The index register is incremented, to point to the next
value in the table, and the B accumulator is decremented. Since the
register is not zero, the program branches back to address 000B ;. This
continues until the B accumulator equals 00 .

Then, the B accumulator is loaded with 11,,. Remember that the index
register contains the address of the last value in the table (004C,q). The
next six instructions form another fetch and display loop to generate the
second waveform segment. The only instruction that differs from the first
loop is “decrement the index register”” rather than increment.

After the loop is completed, the B accumulator is loaded with 11,5 The
index register now contains the address (003B) of the value at the top of
the table. The next six instructions form the third fetch and display loop.
This is identical to the first program loop; except, the NOP instruction is
replaced with a “complement the A accumulator” instruction. Thus, the
table values can now be used to generate the upper half of the sine
waveform. Program loop four also operates in this manner.

Procedure (continued)

19. Switch the Trainer power off. Then remove the eight wires inter-
connecting the binary data switches and the PIA.

10-107

10-1 08[UNIT TEN

DAC CIRCUIT NEW CIRCUIT Y
RS
R6 10K TPl R10
RS 1000 1/2-W 1000
2000 CONTROL CONTROL

~
=
- - -

P85
PB4
P83
PIA pg 2l

P8l

1C-5
MC1406
443-842

—
w
© {oo |~ fo

il

PAT 2

Figure 10-84
New circuit adds a voltage comparator to

produce an analog-to-digital converter.

20. Refer to Figure 10-84 and add the new circuit shown to the DAC
circuit. The output of the new circuit is connected to pin 9 (PA7) of
the PIA. If you changed the value of R5 (in the DAC circuit) to 1000
ohms, in a previous section of this experiment, remove the 1000
ohm resistor and reinstall the 2000 ohm, 1/2-watt resistor in its
place.

21. Switch the Trainer power on. Then, enter the program listed in
Figure 10-85. Notice that the program begins at address 0170,.

22. Turn control R10 fully clockwise, then execute the program begin-
ning at address 0170.

23. Connect your voltmeter to TP1 (wiper of control R10) and circuit
ground. Then, adjust control R6 for a Trainer display equal in value
to the voltage at TP1. If you cannot adjust the display value down to
the indicated voltage level, place a 1000 ohm, 1/4-watt resistor in
series with resistor R5. Make sure you switch the Trainer power off
before you add the resistor.

24. The circuit you have constructed acts like a digital voltmeter and
will measure the voltage at the wiper of control R10 (TP1). Turn
control R10 and compare the voltage indicated by your voltmeter
with the voltage indicated by the Trainer display.

j—%"'“lg'“c Interfacing Experiments 1 0'1 09
E————5 J
00001 NAM A-TO~D REV.0.1

00002 oFrT NOF

00003 0170 ORG $0170

00004 FCRC REDIS EQU $FCEC

00005 FE20 OUTRYT EQU $FE20

00006 ¥INITIALIZE FIA

00007 0170 CE 0004 LoX #4$0004

00008 G173 FF 8000 STX $8000 A SIDE IN

00005 01746 CE FFO4 L.DOX F$FF04

00010 0179 FF 8002 5TX $8002 B SIDE OUT

00011 XFIND EQUAL FOINT

00012 017C C& FF NEWIN LA B #$FF FF=L0W VOIL.TAGE

00013 017E 4F CLR A

00014 Q17F F7 8002 NXTSTF STA B $8002

Q0013 182 CE 00835 L1 450055 X

QUOls 0185 09 WATT nEX KHARDWARE SETTLE WAIT
00017 018& Zé FD ENE WAIT ¥

o015 0188 7 8000 TST $3000 CHECK COMFARITOR
001y 018R 24 06 BFL FOUNL

Q0020 0180 3a m=c g

GOo021 O018E 8K 01 AL & 01

Qo022 G1%Q 172 oA

0003 0121 20 EC ERA NXTSTF

Q0024 ¥OUTFUT RESULTS

Q0025 0193 EBD FCRC FOUND JSK REDRIS SET DISFLAY LOCATION
00026 G196 RD FE20 JER OQUTEYT OQUTFUT BYTE

Q0027 Q199 86 01 oA A #01 X TURN ON

00028 019R RY CLl4F 5T A $C16F

00022 H19E 20 DC EKRA NEWIN ¥ DECIMAL FOINT
Q0030 ENI

Figure 10-85
Program to convert an analog signal to
a digital value.

Discussion

In this analog-to-digital conversion circuit, the MPU supplies a known
voltage to a voltage comparator, and looks for a match with the unknown
voltage at the comparator. Because the program operates in digit incre-
ments, each voltage level step will equal 0.1 volts after the circuit has
been calibrated. Thus, the unknown voltage can be resolved to one-tenth
of a volt.

At the beginning of the program, the PIA is initialized (A side in, B side
out); the B accumulator is loaded with FF (to start comparison at 0 volts);
and the A accumulator is cleared (used to store the voltage count, for the
display). The B accumulator is stored to the PIA for conversion to a

10‘110. UNIT TEN

voltage level. The next three instructions use the index register to supply
ashort time delay. This is needed since the analog circuit cannot operate
as quickly as the MPU.

After the short delay, the comparator output to the A side of the PIA is
checked for a voltage match. If there is no match, the B accumulator is
decremented, increasing the voltage level, and the A accumulator is
incremented, by adding 01, to the contents, to indicate the voltage
increase. Since this circuit is emulating a digital voltmeter, the displayed
voltage must be in decimal (base 10). Therefore, the next instruction
performs a decimal adjust on the A accumulator. This converts the binary
addition to a BCD format.

The program then branches back to address 017F,; and repeats until the
comparator test indicates that the voltage generated by the MPU equals
the unknown voltage. You can observe the conversion routine by con-
necting the Y1 input of a dual-trace oscilloscope to TP2 and circuit
ground, and the Y2 input to TP3 and circuit ground. Figure 10-83 shows
the location of the test points, while Figure 10-86 shows the display of the
0.5-volt conversion.

1 T +
: ! i T |
| | I
: } i E
: ‘ s COMPARATOR
i) p QUTPUT
Y, ; T
INPUT +
I
Y2 + i
INPUT I
T — 3 DAC
: - 4 VOLTAGE
+3
2;: :
l—z :
0 i
il 1 | !

Figure 10-86
Voltage comparator timing in relation
to the DAC voltage signal.

Interfacing Experiments

As soon as the comparator senses that the known and unknown voltages
are equal, it switches low to tell the MPU a match has occurred. This
causes the program to branch to the display output routine. REDIS stores
the location of display H. OUTBYT writes the contents of the A ac-
cumulator to displays H and I. Next, the contents of the A accumulator is
changed to 01,4. This is stored to address C16F,s, which lights the deci-
mal point in display H.

Procedure (continued)

25. Switch the Trainer power off. Then remove the wires and compo-
nents from the two large connector blocks. Caution: The PIA is an
MOS device. When you remove it from the Trainer, press it onto its
conductive foam pad. This will reduce the possibility of damage
from static electricity.

26. Return to the Unit Activity Guide of Unit 8.

10-111

HEATHKIT
CONTINUING
10-112 | inpex

INDEX

INDEX

A

ADC (Add with Carry), 4-46 to 4-48, 9-81, 9-85 to
9-89

ADD (Add), 2-22 to 2-23, 2-36 to 2-39, 2-58 to
2-61, 4-29 to 4-32, 4-55, 9-20, 9-22 to 9-25,
9-31 to 9-33

ALU (Arithmetic Logic Unit), 2-16

AND 3-35 to 3-36, 9-36, 9-43 to 9-44

ANSCII (American National Standard Code for
Information Interchange), 1-48

ASCII (American Standard Code for Information
Interchange), 1-48 to 1-51

ASCII Code word format, 1-50, 10-91 to 10-93

ASLA (Arithmetic Shift Accumulator Left), 4-51
to 4-53, 9-90 to 9-94

Accumulator, 2-16 to 2-17, 2-64

Accumulator A, 5-8 to 5-9

Accumulator B, 5-8 to 5-9

Addend, 3-6

Address, 2-9, 2-24, 2-47, 7-33

Address bus, 2-18, 7-10, 10-14

Address clearing, 9-106

Address decoder, 2-18, 6-28, 7-7, 7-32 to 7-33,
8-10, 10-27 to 10-38

Address register, 2-17, 5-7

Addressable latch, 7-42 to 7-46

Addressing modes:
Combined, 2-66 to 2-67
Direct, 2-46 to 2-65
Extended, 5-9, 5-37 to 5-38, 9-102 to

9-103
Indexed, 5-39 to 5-45, 9-102, 9-104 to
9-108

Inherent (implied), 2-44, 2-46
Immediate, 2-45 to 2-48, 9-31
Relative, 4-7 to 4-8

Algorithms, 4-29 to 4-43

Alphanumeric codes, 1-48 to 1-53

Analog to digital conversions, 10-108 to 10-111

Arabic number system, See “Decimal Number
System”’

Arithmetic instructions, 5-16 to 5-18, “Appen-
dix A”

Audio output, 10-71 to 10-82

Augend, 3-6

B

BA (Bus Available), 7-12

BCC (Branch if Carry Clear), 4-26

BCD Codes (Binary Coded Decimal), 1-42 to
1-46, 4-37 to 4-43, 4-52 t0 4-55, 9-92 t0 9-99

BCS (Branch if Carry Set), 4-26, 4-43

BEQ (Branch if Equal Zero), 4-26, 9-55 to 9-58

BMI (Branch if Minus), 4-20 to 4-21, 4-26, 4-33,
4-35 to 4-36

BNE (Branch if Not Equal Zero), 4-26

BPL (Branch if Plus), 4-26

BRA (Unconditional Branch) (Branch Always),
4-20, 9-55, 9-57 to 9-60

BSR (Branch to Subroutine), 6-23

BVC (Branch if Overflow Clear), 4-26

BVS (Branch if Overflow Set), 4-26

Base (radix), 1-6

BAUDOT code, 1-52 to 1-53

Bi-directional bus, 7-6, 10-14

Binary arithmetic:
Addition, 3-6 to 3-8, 3-26, 3-30 to 3-32,

V 5-42, 9-102 to 9-105 9-107 to 9-108
Subtraction, 3-8 to 3-10, 9-114, 9-116 to
9-118

Multiplication, 3-11 to 3-13
Division, 3-14 to 3-15

10-113

10-114} inoex

Binary codes, 1-42 to 1-53

Binary number system, 1-11 to 1-16, 1-42
Binary point, 1-12 to 1-13

Bit, 1-11, 2-10 to 2-11

Boolean operations, 3-35 to 3-40

Borrow, 3-9 to 3-10, 4-23

Branch instruction execution, 4-8 to 4-13
Branching, 4-6 to 4-17, 5-26 to 5-29, 9-45to 9-79
Branching backward, 4-16 to 4-17, 9-60 to 9-61
Branching forward, 4-14 to 4-15, 9-59

Buffer, 7-8 to 7-10

Bus, 2-6, 7-6 to 7-8

Byte, 2-10 to 2-11

C

CE, CE (Chip Enable), 7-7, 7-27 to 7-28, 7-30 to
7-33, 10-9

CLI (Clear Interrupt Mask), 6-45

CLRA (Clear Accumulator), 9-20, 9-26

CMQOS, 7-20

CR (Control Register), 8-23

CS (Chip Select Lines), 7-28, 8-28

Carry, 3-6 to 3-8

Carry flag (C), 4-23, 9-88 to 9-90

Carry register, See ‘“‘Carry Flag”

Cascade stack, 6-6 to 6-9

Chip, 2-3

Clock signals (41, 22), 7-11 to 7-14

Condition codes, 4-22 to 4-26, 5-10, 5-30 to 5-31,
9-46 to 9-54

Conditional branching, 4-20 to 4-26, 9-45, 9-67
to 9-69

Conductors, 2-13

Contact bounce, 8-7

Contact bounce elimination, 8-16 to 8-17

Contact closure detection, 8-6

Controller sequencer, 2-18, 5-7

Conversion:

BCD to binary, 4-37 to 4-40, 9-68 to 9-72

Binary to BCD, 4-41 to 4-43

Binary to decimal, 1-13, 9-6 to 9-8

Binary to hexadecimal, 1-36 to 1-38

Binary to octal, 1-24 to 1-26

Decimal to binary, 1-14 to 1-16, 9-8 to
9-10

Decimal to hexadecimal, 1-33 to 1-35,
9-12 to 9-16

Decimal to octal, 1-21 to 1-23

Hexadecimal to binary, 1-38 to 1-39

Hexadecimal to decimal, 9-16 to 9-18

Octal to binary, 1-26

Octal to decimal, 1-20

D

DAA (Decimal Adjust Accumulator), 4-53 to
4-55, 9-94 to 9-99

DAC (Digital to Analog Conversion), 10-96 to
10-101

DBE (Data Bus Enable), 7-10, 7-12

DDR (Data Direction Register), 8-23

DECA (Decrement Accumulator), 9-20, 9-26,
9-37 to 9-38

DMA (Direct Memory Access), 7-10, 7-12

Data bus, 2-19, 7-10

Data handling instructions, 5-18 to 5-21, “Ap-
pendix A”

Data register, 2-16, 2-17, 5-7

Data storage, 9-29 to 9-30

Data test instructions, 5-23 to 5-24, ‘“Appendix
A"

Data transfer, 9-27 to 9-28

Debounce, 10-60 to 10-64

Decimal number system, 1-6 to 1-8

Decoder-driver, 7-37 to 7-38

INDEX

Decoders, See ‘“Instruction Decoder”

Digital clock program, 9-138 to 9-146, 10-19 to
10-24

Displays, 7-36 to 7-41, 7-47 to 7-48, 8-33 to 8-36

Dividend, 3-14 to 3-15

Division, 4-33 to 4-36, 9-62 to 9-66

Divisor, 3-14 to 3-15

Do nothing instruction (NOP), see “NOP”

E

ENCODE, 8-11 to 8-12, 8-16 to 8-17

8421 BCD code, See “BCD Codes”

exclusive OR, 3-38 to 3-39

Even parity, 1-50

Execute phase, 2-21, 2-34 to 2-36’ 4-8 to 4-13,
7-14

F

Fetch phase, 2-21, 2-29 to 2-33, 7-13 to 7-14

Flip-flops, 7-20, 7-22 to 7-23

Flow chart, 4-31, 4-34, 4-38, 4-42, 9-62, 9-90,
10-62

Fractional numbers, 1-7 to 1-8

G
Gray code, 1-47

H

HALT, 7-12

HLT (Halt), 2-22 to 2-23, 2-40

Half carry flag (H), 5-10

Hexadecimal number system, 1-29 to 1-39, 9-11
to 9-18

Higher order byte, 2-11

I

INCA (Increment Accumulator), 9-20, 9-26

INCH (Input Character), 8-12, 8-16 to 8-17

TRQ (Interrupt Request), 6-44 to 6-45, 7-11 to
7-11, 8-22, 10-19 to 10-24

Improper timing, 10-10

Index register, 5-10, 5-24 to 5-25

Input, 2-7, 6-30 to 6-31, 7-22 to 7-23, 10-53 to
10-59

Input, 7-22 to 7-23

Input/output (1/0), 2-7, 6-27 to 6-34, 8-21 to 8-22,
10-67 to 10-70

Input/output device, 2-7, 6-28

Input/output interface, 6-28

Input/output port, 2-7

Input-output programming, 6-31 to 6-33

Input serial data, 10-88 to 10-89

Instruction, 2-8 ‘“Appendix A”

Instruction decoder, 2-17, 5-7

Instruction set summary, 5-31, 5-46 to 5-48,
“Appendix A”

Instruction timing, 7-13 to 7-14

Integer, 1-7

Interface lines, 7-10 to 7-12

Interfacing, 7-6 to 7-17

Interfacing requirements, 8-6 to 8-8

Interfacing with displays, 7-36 to 7-48, 10-40 to
10-42

Interfacing with switches, 8-6 to 8-17

Interfacing with RAM, 7-20 to 7-33

Interrupt, 6-34, 6-37 to 6-47, 10-59 to 10-64

Interrupt mask, 5-8, 5-10, 6-39, 6-45

Interrupt vector, 6-38

Invert, 3-40

J
JMP (Jump), 4-6, 6-17 to 6-19
JSR (Jump to Subroutine), 6-20 to 6-21

K

Key closure detection, 8-11 to 8-15
Key closure encoding, 8-11 to 8-15
Keyboard arrangement, 8-8 to 8-18
Keyboard circuit, 8-10 to 8-11
Keyboard decoding, 8-37 to 8-38
Keyboard switches, 8-6

10-115

10-116 | inpex

HEATHKIT
CONTINUING

L
LDA (Load Accumulator), 2-22 to 2-23, 9-20
LED (Light Emitting Diodes), 6-29, 9-127 to
9-131
Common anode, 7-37
Common cathode, 7-37
Seven segment, 7-36 to 7-41, 10-43 to
10-52
LSB (Least Significant Bit), 1-13 to 1-16,1-24 to
1-26, 2-11
LSD (Least Significant Digit), 1-8, 1-21 to 1-23,
1-33 to 1-35
Location, 2-18
Logic instructions, 5-22, “Appendix A"
Looping, 4-6
Lower order byte, 2-11

M

MQOS, 7-20 to 7-21

MOSFET, 7-21 to 7-22

MPU (Microprocessor Unit), 2-6, 2-15 to 2-18,
7-30 to 7-31

MPU cycle, 2-46, 7-13 to 7-17

MSB (Most Significant Bit), 1-13 to 1-16, 1-24 to

1-26, 2-11

MSD (Most Significant Digit), 1-8, 1-21 to 1-23,
1-33 to 1-35

Memory, 2-18 to 2-20, 2-64, 10-8 to 10-18

(Memory) stack, 6-9 to 6-15

Microcomputer, 2-6, 2-14

Microprossor, 2-3, 2-6, 2-14

Microprocessor keyboard commands, 9-19

Minuend, 3-8

Mnemonic, 2-22

Multiple-precision arithmetic, 4-47 to 4-50, 9-82
to 9-91, 9-94 to 9-97

Multiplexing displays, 7-47 to 7-48, 8-33 to 8-36

Multiplicand, 3-11 to 3-13

Multiplication, 4-29 to 4-32, 4-51 to 4-53, 9-25 to
9-26, 9-32t0 9-33 9-55 to 9-58, 9-92, 9-109 to
9-115

Multiplier, 3-11 to 3-13

N

NDRO (Nondestructive Readout), 2-19

NEGA (Complement 2’s or Negate), 9-36, 9-39 to
9-40

NMI (Monmaskable Interrupt), 6-40 to 6-42, 7-10
to 7-11

NOR (exclusive), 10-35 to 10-38

NOP (Do Nothing Instruction), 9-46 to 9-47

Negative Flag (N), 4-22

Negative numbers, 3-16 to 3-21, 3-31 to 3-32,
9-37 to 9-40

Negative powers of sixteen, B-53

Negative powers of ten, 1-7

Negative powers of two, 1-12, B-52

Negative reigster, See ‘“Negative Flag (N)”

Nested subroutine, 6-22 to 6-23

o)

OR, 3-36 to 3-38, 9-36, 9-43 to 9-44

OR (Output Register), 8-23 to 8-27

Octal number system, 1-20 to 1-26

0Odd parity, 1-50, 10-94

Offset address, 5-40to 5-41, 5-44 to 5-45, 9-107 to
9-108

One’s complement, 3-17 to 3-18

Opcode, 2-22 to 2-24, 9-19, 9-33

Operands, 2-16 to 2-17, 2-23 to 2-24, 2-46, 5-41

QOutput, 2-7,6-29t06-30, 10-40to 10-52, 10-89 to
10-95

Overflow, 1-15, 1-22, 1-33 to 1-34, 4-24 to 4-25

Overflow flag (V), 4-24 to 4-25

Overflow register, (See “‘Overflow Flag (V)”

P
@1 (Phi 1) (Clock Signal), 7-11, 7-13, 7-15 to 7-16
$2 (Phi 2) (Clock Signal), 7-11 to 7-16, 7-32 to
7-33, 8-22
PIA (Peripheral Interface Adapter), 8-20 to 8-39,
10-65 to 10-91
PIA (continued)
Addressing, 8-28 to 8-30
Decoding keyboards, 8-37 to 8-38

woex | 10-117

Decoding switch matrix, 8-38 to 8-39
Driving seven segment displays, 8-33 to
8-36
Initialization, 8-25 to 8-27
Registers, 8-23 to 8-24
Registers addressing, 8-24
PULL, 6-8, 6-11 to 6-12, 9-122 to 9-123
PUSH, 6-7, 6-10 to 6-11, 9-120 to 9-121
Parity, 1-50, 10-93 to 10-95
Pins, 7-10 to 7-12
Positional notation:
Binary number system, 1-11 to 1-12
Decimal number system, 1-6 to 1-7
Hexadecimal number system, 1-32
Octal number system, 1-20

Powers of eight, 1-20, B-53

Powers of sixteen, 1-32, B-53

Powers of ten, 1-6

Powers of two, 1-11, B-51

Program, 2-8, 10-16 to 10-17

Program counter, 2-17, 5-9

Program debugging, 9-73 to 9-79

Program execution, 2-28 to 2-40, 2-52 to 2-65
Program timing, 7-15 to 7-17

Pure binary code, 1-42

Q
Quotient, 3-14 to 3-15

R

RAM (Random Access Memory), 2-20, 6-37, 7-6
to 7-7, 7-13, 7-20 to 7-33, 9-33 to 9-34

RAM connection to MPU, 7-30 to 7-31

RAM (Static), 7-20 to 7-23

RE (Read Enable), 10-14 to 10-15

READ, 2-19, 7-23, 7-27, 10-9

RESET, 6-37 to 6-40, 7-10 to 7-11, 8-22, 8-25 to
8-26

RESET, 6-38, 7-11

ROM (Read Only Memory), 2-20, 6-37, 7-8, 7-13,
9-33 to 9-34

RS (Register Select Line), 8-29 to 8-30

RTI (Return From Interrupt), 6-42 to 6-43

RTS (Return From Subroutine), 6-20 to 6-21
R/W (Read/Write), 2-20, 7-10, 8-22, 10-9to 10-10
Radix, See ‘‘Base”

Radix point, 1-8

Read/write memory, 2-18, 2-20

Reset interrupt sequence, 6-38

S

SBC (Subtract with Carry), 4-46, 4-49 to 4-50,
9-81, 9-89 to 9-90

SEI (Set Interrupt Mask), 6-45

STA (Store Accumulator), 2-62 to 2-65, 9-20,
9-23

SUB (Subtract), 4-20 to 4-21, 4-23, 4-33 to 4-36,
9-36, 9-42

SWI (Software Interrupt), 6-46 to 6-47

Sign and magnitude, 3-16

Signed number arithmetic, 3-30 to 3-31, 9-37 to
9-41

Sine waveform, 10-105 to 10-107

6800 MPU:
Architecture, 5-6 to 5-12
Block diagram, 5-11 to 5-12
Data sheet, 7-17, “Appendix B”
Instruction set, 5-15 to 5-31, “Appendix A"’
Interface lines, 7-10 to 7-12
Programming model, 5-8 to 5-10

Software interrupt, 6-46 to 6-47

Special binary codes, 1-47

Square root program, 9-114 to 9-118

Stack, 6-6, 6-13 to 6-15, 9-121 to 9-123

Stack pointer, 5-10, 5-24 to 5-25, 6-9 to 6-10

Standard noninverting buffer, 7-8

Stored program concept, 2-8 to 2-9

Straight line program, 4-6, 9-19 to 9-34

Subroutine, 6-17 to 6-24, 9-127 to 9-146

Subtrahend, 3-8 to 3-10

Switch debouncing, 8-7, 10-60 to 10-64

Switch decoding, 8-8

Switch matrix decoding, 8-34 to 8-39, 10-84 to
10-87

Switch selection, 8-6

B CONTINUING
10-118 EDUCATION
0 1 INDEX
T \%
TSC (Three state control line), 7-10 to 7-11 VMA (Valid Memory Address), 7-12
Two’s complement arithmetic, 3-27 to 3-29 Voltage ramp, 10-102 to 10-103

Three state logic, 7-8 to 7-10
Three state noninverting buffer, 7-8 to 7-10,8-6 W

Timing, 10-10 WAI (Wait for Interrupt), 6-47, 9-120 to 9-122
Triangle waveform, 10-104 to 10-105 WRITE, 2-20, 7-22 to 7-23, 7-27, 10-9
Two’s complement, 3-18 to 3-21, 9-39 Word, 2-9
Two’s complement arithmetic, 3-26 to 3-27,3-29 Word length, 2-9 to 2-11
to 3-30, 4-25
Z
U Zero flag (Z), 4-22

Unconditional branching, See “BRA” Zero register, See “Zero Flag”

